

Assessment of Critical Barriers and Opportunities to Accelerate Biofuels and Biomethane as Transportation Fuels in California (STEPS/ITS)

Stephen Kaffka

September 17, 2015

California has a large amount of potentially available biomass from urban, agricultural and forest sources. A much smaller fraction is technically available, and a yet smaller fraction from most sources is currently used for power or fuel.

Table ES.2. Biogas Technical Potential from California Resources						
Feedstock	Amount Technically Available	Biomethane Potential (billion cubic feet) CNG (gge)	Fraction in use			
Animal Manure	3.4 MM BDT	19.7 (155 Mgge)	< 1%			
Landfill Gas	106 BCF	53 (420 Mgge)	~60 %			
Municipal Solid Waste (food, leaves, grass fraction)	1.2 MM BDT	12.6 (I00 Mgge)	< 1%			
Waste Water Treatment Plants	11.8 BCF (gas)	7.7 (60 Mgge)				
Total		93 (735 Mgge)				

Williams et al., CBC, 2015.; (7.74 GGE/MMBTU)

Kell MARANA (hor)

CALIFORNIA BIOMASS COLLABORATIVE

On an agro-ecological basis, there are many feedstock crop possibilities in California

MUSAW		ZENA (NJERDA)					
	Current and potential in-state alternative fuel production estimates						
CAL PERA	N N	in-state capacity	estimated	notes	STATA STATA		
STER IN	Source (current)		feedstock cost				
melina		mgy	\$/gge (2009-10)		and the second		
	Grain-based ethanol	205		currently mostly corn grain based	1		
	Biodiesel	55-60		mostly FOG	Energy beets		
	Other						
	(potential new in-state)				and and have the same		
	New agricultural crops				the war war to be		
	ethanol	150	0 90 to 3 90	Grain sorghum, sugarbeets, sugarcane and energy			
	Ctildiloi	150	0.50 to 5.50	cane , use of approximately 500K ac			
	biodiesel	75	2.82	oilseeds (canola, Camelina)	NAKE NOT		
MARCHAN ST	Agricultural residues						
S CONTRACTOR	rice straw	6.8		as CNG (gge), 4 AD units and 200K t straw			
Sec. 1	dairy manure	155		as CNG	and and some head with		
1.1.1					The series and the series		
	Additional FOG	40		Industry estimate	and the second		
1.55							
	biodiesel from corn oil	?					
1. A. 194		255					
1. 100	ethanol	355					
a Breen	biodiesel	175			Charles and the start		
1.5	CNG	160		From: Kaffka et al. 2015/STEPS-CEC project			
10.00							

Salt-tolerant perennial grasses on "marginal" lands

Potential for Biofuel Production from Forest Woody Biomass/ Mitchell et al., 2015 (STEPS/ITS)

The project developed a new statewide resource assessment of forest biomass feedstock. The assessment utilizes a knowledge base of forestry expertise developed at UC Berkeley, and the **Biomass Summarization Model (BioSum)**, *a temporally dynamic, spatially explicit, forest stand development model*...that estimates ...on-site woody biomass resulting from forest operations. BioSum had not previously been applied statewide in California.

Over the **40-year simulation period**, *California forests generate forest residue of about 177 million bone-dry-tons (BDT) on private land, and 100 million BDT on federal land, for a total of 277 million BDT. On average, this is about 7 million BDT of forest woody biomass per year across the state.*

The largest total cumulative amount of woody biomass comes from North Coast private lands, with over 74 million BDTs. Standardized on a per acre basis, Western Sierra private lands have the greatest output, 34 BDT/acre, and the Southern Oregon/Northeast California public lands have the least output, 12 BDT/acre.

GBSM was run for two conversion technologies; biochemical cellulosic ethanol and gasification-synthesis of drop-in fuels (Fischer-Tropsch, FTD). *Cellulosic ethanol biofuel production ranged from 45 million gasoline gallon equivalents per year (MGGEY) to 154 MGGEY with minimum selling prices from \$3.85/gge to \$4.85/gge. FTD production estimates ranged from 17 MGGEY to 241 MGGEY with minimum selling prices from \$3.40/gge to \$4.80/gge.*

The value of biofuels would need to be greater than those observed in the current market to make the system profitable. However, prices of \$20.00 per Low Carbon Fuel Standard credit and \$0.75 per Renewable Fuel Standard cellulosic RIN would provide residue-based biofuels an additional value of roughly \$1.25/gge. The best performing biorefineries analyzed here are economic with the \$1.25/gge subsidy.

