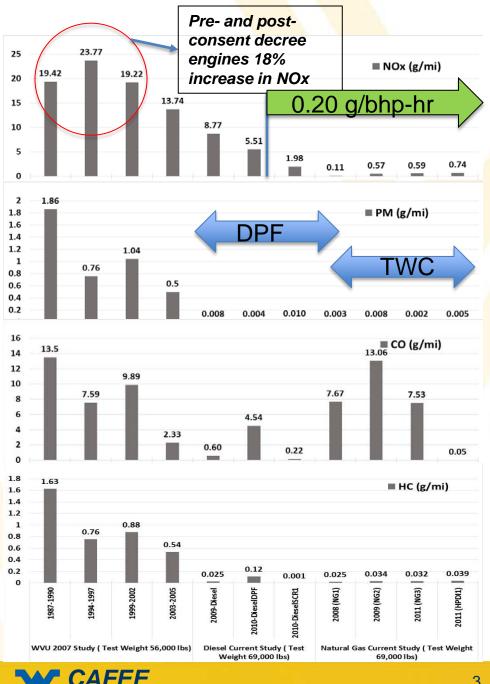
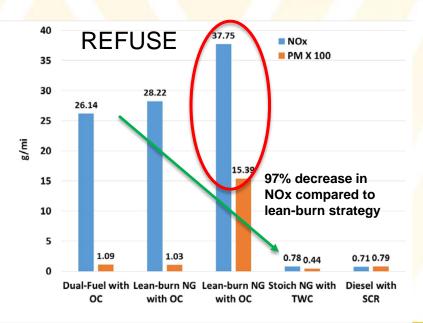
NATURAL GAS IN HEAVY-DUTY TRUCKS: A LOOK AT REGULATED EMISSIONS

Arvind Thiruvengadam Ph.D. Research Assistant Professor Center for Alternative Fuels, Engines and Emissions West Virginia University Morgantown, WV



UC DAVIS Sloan Natural Gas Workshop Oct 1st, 2015 Davis, California

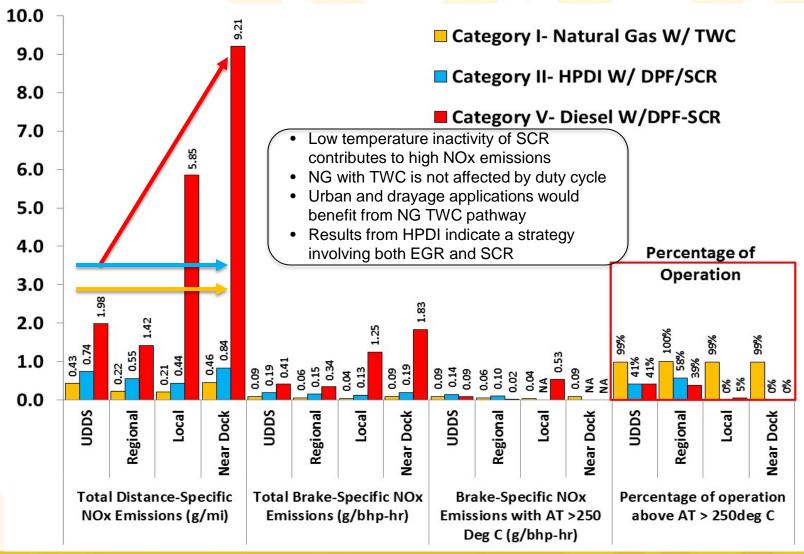

INTRODUCTION

- USEPA 2010 emissions regulation: NOx at or below 0.2 g/bhp-hr and PM 0.01 g/bhp-hr
 - California has optional low NOx standard of 0.02 g/bhp-hr
- Engine technologies compliant to the current standards
 - Natural gas with Three-way catalyst (TWC)
 - Simple aftertreatment configuration
 - Dual-Fuel HPDI with DPF and SCR
 - Diesel with DPF and SCR
- Diesel engine depends on SCR technology for NOx reduction
- Natural gas engines equipped with TWC have shown the potential of low NOx emissions
- Natural gas fueling infrastructure has contributed to an increase in urban natural gas heavy-duty vehicle population
 - Fueling infrastructure not sufficient for long-haul application

BACKGROUND

- NG trucks with TWC show 96% lower NOx emissions compared to SCR equipped diesels.
- PM emissions from DPF equipped diesels and TWC equipped NG vehicles are in the same order of magnitude
 - PM emissions with engine age?
 - Lubrication oil emissions? •
- CO emissions significantly higher due to the stoichiometric engine platform
- NMHC emissions is close to detection limits due to efficient catalytic action of TWC

UC DAVIS Sloan Natural Gas Workshop Oct 1st , 2015 Davis, California


Center for Alternative Fuels, Engines, and Emissions

CURRENT NATURAL GAS UTILIZATION PATHWAYS

http://www3.epa.gov/otaq/consumer/fuels/altfuels/altfuels.htm#4

CURRENT TECHNOLOGY- GOODS MOVEMENT APPLICATION

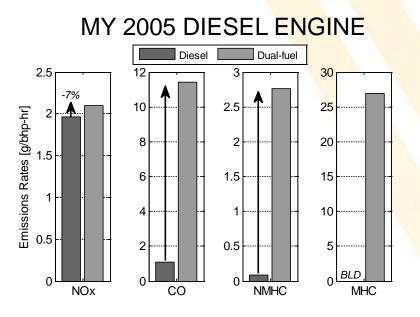
CHALLENGES TO TRUCK APPLICATION

Vehicle mileage range constraints

- LNG provides greater energy density than CNG, hence providing a longer range
- Stoichiometric platform is constrained with range of operation
- Immense fueling infrastructure is required to realize long-haul truck application
- Stoichiometric engine pathway suited for urban goods delivery and drayage operation
- Dual-fuel HPDI provides diesel like performance with mileage in the range of 300-400 miles depending on load
- Engine Durability
 - The impact of engine aging on emissions performance have not been accurately studied for natural gas engines
 - Studies have shown increased lubrication oil emissions with older engines
 - Crankcase emissions of methane and NOx have been observed from high mileage natural gas transit buses

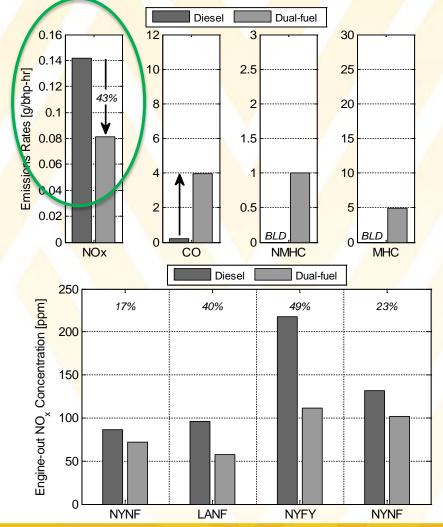
Future Pathways

- Development of lean-burn engines coupled with SCR could address range challenges
- Advancements in low temperature catalyst technology can improve emission performance from HPDI platform
- Development of robust OBD strategies (2018 deadline) can identify engine component failure
- Over 95% of the hydrocarbon emissions are characterized by Methane, therefore development of methane oxi cat will be vital to meet 2017 GHG standard


RETROFIT PATHWAY

- Shale gas boom has contributed to a favorable market for alternative fuel retrofit kit manufacturer
- Retrofit technologies range from very basic, low key natural gas fueling algorithms to relatively advanced control strategies
 - Control algorithms often interrogate base engine injector pulses to determine natural gas fueling strategy
 - Altering injection strategy to gain fuel economy benefits is possible.
- Strategies are often aimed at meeting EPA inside useful life certification requirements.
 - Both engine dynamometer and in-use testing
 - Altitude testing

Challenges


- Difficulty of dual-fuel operation during idle and low engine loads
- Limited NG substitution at full load due to engine knocking (knock limited gas replacement)
- Advanced after-treatment systems needed to comply with GHG emissions regulations
- Increased CH₄ emissions => diesel combustion chamber not optimized for port fuel injection, CH₄ slip due to flame quenching and crevices
- Limited CH₄ conversion efficiency of existing diesel oxidation catalysts (CH₄ light-off temperatures typically 400-450C)
- Possible accelerated aging or damaging of vanadium-based SCR after-treatment system

DUAL FUEL RETROFIT KIT

- Interestingly, dual-fuel system appears to lower engine-out NOx in modern engine platforms compared to older technology
- Could be due to interaction of NG fueling and higher EGR rates relative to MY 2005.

USEPA 2010 DIESEL ENGINE

CONCLUSIONS

- Natural gas has shown promise as a clean burning fuel for heavy-duty application
- Combustion control to limit methane and CO emissions remains a challenge
- NG with TWC is the existing pathway to achieve low NOx standards
 - Research into lean-burn strategy with SCR can alleviate some of the long-haul range concerns
 - Development of low temperature catalyst or thermal management strategy would be necessary to combat THC emissions
- On-Board Diagnostic (OBD) for natural gas engines is of high importance
 - Oxygen sensor health monitoring to prevent overly lean or rich operation
 - TWC health monitoring
 - Develop OBD monitors that predict SCR aging for dual-fuel engines
- Fuels derived from natural gas such as DME could prove to be versatile in captive fleets such as delivery trucks, refuse, yard hostlers.