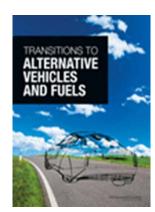
PEV Charging Infrastructure: What can we learn from the literature?

David L. Greene Howard H. Baker, Jr. Center for Public Policy The University of Tennessee


A presentation to the STEPS Workshop: Critical Barriers and Opportunities for PEV Commercialization in California Davis, California April 26, 2016

McNutt & Rodgers' (2004) review of alternative fuel (AF) policies provides lessons that remain valid today

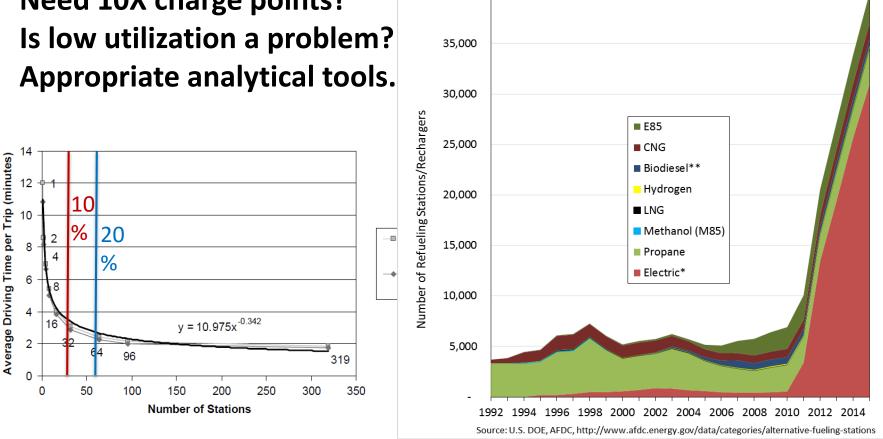
- The incumbent vehicle and fuel technology will be difficult to displace, in part because it will adapt and improve to compete with alternatives.
- Niche markets will not grow into mass markets unless alternative vehicles and fuels offer **compelling advantages to consumers**.
- Consumers make vehicle choices based almost entirely on private not social benefits.
- Low energy density fuels that require more frequent refueling impose real costs on users and are an important barrier to mass market adoption.
- A successful transition is likely to require **disincentives for continued use of conventional fuels** as well as incentives for alternatives.
- Unregulated and unsubsidized private sector investment in refueling infrastructure was rarely built in advance of market development and when it was, the financial results were disappointing.
- Coordination between the automobile and energy industries is vital.
- Scale matters a great deal in the automotive and fuel industries. Low volumes in early markets are a large financial barrier.

Creating an energy transition for the public good is a new challenge for public policy.

- Multi-decadal time scale
- Technological & market uncertainties
- Multiple market issues, strong positive feedbacks
- Initially Costs>Benefits, later Benefits>>Costs
- Large scale energy transitions need a complex, multi-dimensional policy strategy, to...

- Co-evolve demand and charging infrastructure
- Reduce vehicle costs (Technology, Learning, Scale, Diversity)
- Overcome consumers' unfamiliarity and risk aversion
- Create an efficient institutional infrastructure

EVSE is different.


40,000

U.S. Alternative Refueling Stations by Fuel Type: 1992-2015

4

Less critical but still important: 75-80% of charging at home.

Value of \$100s to \$1,000s. **Need 10X charge points?**

DOE AFDC: 13,335 electric stations 32,728 charging outlets

How can we do it?

- There's more than one way.
- Multi-dimensional policies
 - Many costs decrease exponentially
 - Societal, institutional learning
 - Research, development, demonstration, deployment
- Durable policies
 - ZEV mandates + subsidies & incentives
 - CAFE/GHG standards
 - Highway user fees on energy
 - C-tax, cap and trade (?)
- Monitor, measure, adapt and persist.

THANK YOU.

Backup slides.

The complexity of the transition problem appears to require a comprehensive policy strategy addressing all major barriers because of:

- Consumer behaviors that aren't "economically rational"
 - The majority's risk aversion to novel technologies
 - Lack of information and unfamiliarity
 - The tendency of markets to undervalue energy efficiency
- Important non-market processes, including changing government codes, standards and ordinances
- Positive and negative external costs and benefits
 - "chicken or egg" network external benefits
 - Technology "spillover" effects
- Strong positive feedbacks create tipping points.
- Uncertainty and long time constants for change require persistent, adaptive strategy.

Word of mouth, advertising, reviews and ratings, dealer experience

- Public knowledge of PEV policies ranged from 0.3% to 5.5%.
- 4 out of 5 said incentives increased likelihood of PEV purchase (Krause et al., 2013).
- Most say opinions of others would have little influence on likelihood of buying a Plug-in Hybrid Electric Vehicle (PHEV) (Krupa et al., 2014).
- Majority say at least 18% of the vehicles on the road must be PHEVs before they would consider buying one.
- Target policies to areas where early adopters are most concentrated (Skerlos and Winebrake, 2010; Green et al., 2014).
- New car dealers influence sales but the evidence is based on customer satisfaction surveys rather than sales impacts.
 - PEV buyers rated the dealer experience lower than conventional vehicle buyers (Cahill et al., 2015).
 - Sales personnel misperceived the value of time spent selling a PEV.

Reduce the cost of refueling: Fuel availability

- Importance varies greatly by vehicle technology.
- One US survey: availability of 1% to 10% like price increase of \$4,250 to \$16,000 (Melaina et al., 2013).
- Those not interested in Alternative Fuel Vehicles (AFV) more worried about fuel availability than early adopters.
- PEV owners do 75%-80% of recharging at home; INEL, 2014).
- Awareness of public recharging weakly related to interest in PEVs (Bailey, 2015).
- Value of recharging networks in San Francisco and Seattle, \$1,000-\$2,000 per BEV. Other cities, \$100-\$1,000 (Lutsey, 2015).

Early alternative fuels infrastructure requires support. What works best?

- Low utilization and uncertain future demand makes investment unattractive in early markets (Eckerle and Garderet, 2012; Brown et al., 2013; Botsford, 2012).
- Requires capital and/or operating subsidies to create 3-5 year payback (IPHE, 2010).
- ARRA provided \$400 million for vehicle electrification, increased the AF infrastructure tax credit to 50% or \$50,000.
- With 50/50 ARRA funding, EV Project installed 12,000 level 2 chargers (residential and public) and 100 DC fast chargers.
- The 12,552 public charging stations in the U.S. (AFDC, 2016) have very low utilization rates (Green et al., 2014).
 - Sites with at least 3 events/week averaged 4-7 per week (INEL, 2014)
 - Most sites had fewer charging events.
 - NRC (2015) EV Barriers Committee: federal government should refrain from further investment until relationship between infrastructure and PEV adoption are better understood.