Fossil and Renewable Natural Gas as a Fuel in California and US

Overview of STEPS research

Rosa Dominguez-Faus, Ph.D. UC Davis, June2016

Team: Rosa Dominguez-Faus, Amy Jaffe, Daniel Scheitrum, Nathan Parker

Quick facts

- Abundant and cheap
- US stopped importing natural gas altogether, could export if economic.
- Can be used as CNG or LNG
- Low NOx and Ultra Low NOx non attainment ozone areas: ports, South Coast...
- Can be a low carbon fuel
- Limited public refueling infrastructure

- Natural gas in transportation:
- California: 16,467 million cubic feet —> 126 Million DGE (4.6% of California Diesel transportation market)
- US: 34,459 million cubic feet \rightarrow 263 Million DGE (**0.6**% of US Diesel market)

Current CNG and LNG stations

Methane Leakage

Upstream leakage

360 BCF annually

Official estimates of methane leakage

Source: EDF based on 2013 EPA GHGI

EPA estimates of leakage goes up and down a little

176.1 164.3

148.0 68.1

> 67.6 61.2 14.7

> 11.9

8.1 6.3

2.1 2.0

Table ES-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO₂ Eq.)

Gas/Source	1990	2005	2010	2011	2012	2013	2014
Natural Gas Systems	206.8	177.3	166.2	170.1	172.6	175.6	176.
Enteric Fermentation	164.2	168.9	171.3	168.9	166.7	165.5	164.
Landfills	179.6	154.0	142.1	144.4	142.3	144.3	148.0
Petroleum Systems	38.7	48.8	54.1	56.3	58.4	64.7	68.
Coal Mining	96.5	64.1	82.3	71.2	66.5	64.6	67.0
Manure Management	37.2	56.3	60.9	61.5	63.7	61.4	61.3
Wastewater Treatment	15.7	15.9	15.5	15.3	15.0	14.8	14.1
Rice Cultivation	13.1	13.0	11.9	11.8	11.9	11.9	11.9
Stationary Combustion	8.5	7.4	7.1	7.1	6.6	8.0	8.
Abandoned Underground Coal							
Mines	7.2	6.6	6.6	6.4	6.2	6.2	6.3
Composting	0.4	1.9	1.8	1.9	1.9	2.0	2.
Mobile Combustion	5.6	2.7	2.3	2.2	2.2	2.1	2.0
Field Burning of Agricultural Residues	0.2	0.2	0.3	0.3		ural Gas	
Petrochemical Production	0.2	0.1	+	+			
Ferroalloy Production	+	+	+	+	Are	a: U.S.	
Silicon Carbide Production and Consumption	+	+	+	+	Show L	Download Ser	ries History
Iron and Steel Production & Metallurgical Coke Production	+	+	+	+		ata (eries	O Area
Incineration of Waste	+	+	+	+	Gross	Withdrawals	
International Bunker Fuels ^b	0.2	0.1	0.1	0.1	Fro	om Gas Wells	;

360/23,000 = 1.5%of shale and conventional natural gas Production (compare to 4.4 Billion cubic feet of methane from Aliso Canyon)

Gross Withdrawals and Production

(Volum	nee in	Million	Cubic	Feet)

Area: U.S.		Perie	od: Annual	\$				
Download Series History	Download Series History 1 Definitions, Sources & Notes							
Show Data By: Data Series Area	Graph Clear	2009	2010	2011	2012	2013		View History
Gross Withdrawals	۰۰ 🗆	26,056,893	26,816,085	28,479,026	29,542,313	30,005,254	31,895,427	1936-2014
From Gas Wells	۰ 🗠	14,414,287	13,247,498	12,291,070	12,504,227	11,255,616		1967-2013
From Oil Wells	۰ 🗠	5,674,120	5,834,703	5,907,919	4,965,833	5,427,676		1967-2013
From Shale Gas Wells	۰ -	3,958,315	5,817,122	8,500,983	10,532,858	11,896,204		2007-2013
From Coalbed Wells	۰ -	2,010,171	1,916,762	1,779,055	1,539,395	1,425,757		2002-2013
Repressuring	۰ -	3,522,090	3,431,587	3,365,313	3,277,588	3,331,456		1936-2013
Vented and Flared	۰ -	165,360	165,928	209,439	212,848	260,394		1936-2013
Nonhydrocarbon Gases Removed	\$	721,507	836,698	867,922	768,598	722,527		1973-2013
Marketed Production	• 🗆	21,647,936	22,381,873	24,036,352	25,283,278	25,690,878	27,271,326	1900-2014
Dry Production	•	20,623,854	21,315,507	22,901,879	24,033,266	24,333,709	25,718,448	1930-2014

Click on the source key icon to learn how to download series into Excel, or to embed a chart or map on your website

- = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

Notes: Beginning with monthly data for January 2006, "Other States" volumes include all of the natural gas producing states except: Alaska, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, Texas, Utah, West Virginia, Wyoming, and the Gulf of Mexico. Data for 2014 are estimated. Monthly preliminary (from January 2014 to present) state-level data for the production series, except marketed

https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Chapter-Executive-Summary.pdf https://www.eia.gov/dnav/ng/ng prod sum dcu NUS a.htm

But some disagree.....

Recent findings

Barnett Study July 2015

Scientists estimated regional and facilitylevel methane emissions in the Texas Barnett Shale, collecting data using aircraft, vehicular, and other groundbased platforms. Researchers estimate regional methane emissions are 50 percent higher than estimates based on the Environmental Protection Agency's Greenhouse Gas Inventory. Learn more »

Local Distribution Study March 2015

The study shows that methane emissions from local natural gas distribution systems are significant, especially in regions such as the Northeast where distribution infrastructure is older, but that progress is being made in reducing emissions from these systems, mainly through regulation

UT Study, Phase 1 December 2013

The study found that methane emissions from equipment leaks and pneumatic devices were larger than previously thought and that techniques to reduce emissions from well completions are effective at capturing 99% of the methane that was previously vented to the atmosphere, providing a data-based example of EPA regulations working. Learn more »

UT Study, Phase 2 December 2014

The study found that emissions from two sources—pneumatics and liquids unloadings—were responsible for a significant portion of methane emissions from the production sector. Learn more »

HARC/EPA Study November 2014

A statistical analysis of national production data suggests unpredictable events, such as malfunctions and maintenance, have a strong influence on emission rates. Learn more »

Methane Maps Release July 2014

EDF and Google Earth Outreach release interactive maps that show methane leaking from pipelines under city streets. Learn more »

Denver-Julesburg Flyover Study May 2014

The study estimated methane emissions that were three times higher than estimates derived from EPA data. The study also found that levels of smogforming VOCs were twice as high as EPA estimates, and Benzene levels were 7 times higher than previously estimated. Learn more »

Methane Research: The 16 Study Series

AN UNPRECEDENTED LOOK AT METHANE FROM THE NATURAL GAS SYSTEM

Methane (CH4) is a growing environmental concern. Methane is a potent greenhouse gas that is contributing to climate change. Science confirms methane is a problem that requires urgent attention. Reducing emissions of both methane and carbon dioxide is critical to slowing the rate of earth's warming and limiting peak warming.

Gathering and Processing Study February 2015

Initial findings from the measurement report show wide variations in the amount of methane leaking at U.S. gathering and processing facilities. Researchers with the study suggest leak detection and repair policies can be effective at minimizing emissions from these sources. Learn more *

Transmission and Storage Study February 2015

The paper confirms compressors and equipment leaks are two primary sources for the sector's methane emissions. Learn more »

Boston Study January 2015

Using tower-based measurements, the study found methane emissions were are more than two times higher than inventory data would suggest, with a yearly average loss rate between 2.1 and 3.3 percent. Learn more »

Bottom-up studies coincide with EPA Top-down studies find EPA underestimates

Why!?

EPA might be missing a small number of **super** emitters

Study name	Industry stage	Measurement technique	Degree of heterogeneity noted	Pages with relevant statistics, tables, or quotes.
Allen et al. 2013	Production	Direct measurement of unloading events	"Four of nine events contribute more than 95% of total emissions"	Article p. 3.
Alvarez 2012	Production	Analysis of reported emissions	"10% of well sites accounted for 70% of emissions"	Article p. 3. Also see SI dataset in Microsoft Excel format.
Chambers 2006	Processing	Down-wind differential absorption LIDAR	"At plant B a single intermittent leak from a pressure relief valve was located that increased site emissions from 104 kg/hr to 450 kg/h."	p. 6
Clearstone 2002	Processing	Direct measurement using Hi-Flow sampler	>100,000 devices sampled across 4 facilities. between 35.7% and 64.6% of leakage from each facility was found leaking from top 10 leaks in each facility.	Executive summary, Table 4 (p. 24).
Cormack, 2007	Transmission compressors	Direct measurement with Hi-Flow	Top single leak accounted 40% of leakage. Top 20% of leaking components accounted for 80% of leakage.	Figure p. 15
Harrison et al. 2011	Compressor stations	IR camera, Hi-Flow sampler	Reported data in Appendix B show outliers. For example, ~2,800 valves and flanges were screened with IR camera and 29 leaks were found. The single largest of these leaks (>1000 mscf/year) is >100,000 times larger than valve and flange EF (0.05 or 0.09 mscf/year). Similar results seen elsewhere. See, e.g., blowdown line leaks from centrifugal compressors (table B2) where largest leak represents 70% of the total leakage.	See tabular data in Appendix B.
NGML, Clearstone, IES 2006	Processing, well sites, gathering compressor stations	Direct measurement using Hi-Flow sampler and optical methods	> 74,000 components sampled. Approx. 1600 were found to be leaking (~2%). From executive summary: "Repairs to 10 largest emitting cost- effective-to-repair components at each sitewould reduce natural gas losses by approximately58%"	Executive summary (p. iii). For details, see Appendix 1 (separate PDF) which ranks leaks by emissions rate for ~1600 leaking sources.
Picard, 2005	All stages	Sampling via various methods	"Top 10 leaks typically contribute more than 80% of emissions from leaks."	p. 3
Shorter, 1997	All stages	Remote sampling via tracer methods	Repeated evidence of skewed emissions distributions: See tables 1–7. Evidence includes: top emitters of size 100x to 10,000x larger than small emitters (table 9); standard deviations in excess of mean emissions rate in many cases, indicating heavy-tailed distribution (table 7).	Tables 1-9
Trefiak 2006	Compressor stations and gas plants	Optical measurement and Hi-Flow sampler	23% of the 144 fugitive emissions sources were responsible for 77% of leakage.	Fig. 2.1

EPA misses **abandoned** wells

- Mary Kang (Princeton) Summer 2014 Thesis: Leakage from Abandoned Oil and Gas Wells
- Methane emissions from AOG wells **are not accounted for in any GHG emissions inventories**, either at the state or national levels in the U.S. or abroad.
- Leakage rates are equivalent to 0.3 to
 0.5% of gross gas withdrawal (in PA for 2010)

More or less established: Actual leakage **25-75% higher** than EPA's estimate

EPA: **1.5%** Corrected: **1.85% -2.95%** for natural gas systems

Source: Brandt et al. 2014. Methane Leaks from North American Natural Gas Systems. Science 343,733.

How does methane leakage affect the Carbon Intensity of CNG and LNG?

Conventional wisdom suggests a 20% reduction from diesel based

Some disagree

Figure 2. Comparison of the sample output probability distributions representing GHG emissions per mile driven in (a) small cars using CNG, gasoline, diesel and gasoline hybrids and (b) in buses using CNG and diesel. Source: Venkatesh et al. 2013

Variability in:

- Upstream methane leakage
 - Regions (regulations)
 - Company culture
- Upstream energy uses
 - Geology
 - Fuel type
 - Refinery efficiency
 - Distribution distances
- Vehicle slip and fuel economy
 - Application: Heavy/Medium/Light
 - Drive Cycle
 - Model
 - Model year

But which variables are important?

Sensitivity Analysis suggest vehicle leakage and vehicle efficiency is the highest contributor to WTW carbon?

OAT Sensitivity Analysis **Baseline leakage** is 1.5%

Upstream vs. vehicle / CO2 vs. CH4 Fuel economy: 5.9 mpg (Diesel), 5.6 (HPDI NGV) (95%), 5.0 (SI NGV) (85%) Methane slip: 0.005 gCH4/mi (Diesel), 4.2 g/mi (Si NGV), 3.84 g/mi (HPDI NGV)

One type of methane leakage greatly **overlooked: Vehicle Methane Slip**

Diesel methane slip: **0.005** gCH4/mi

Natural gas methane slip: **4.2** g CH4/mi HPDI **3.84** g CH4/mi Si

Crank case:

Renewable Natural Gas Potential

Waste water biogas

Food & green waste

3 levels of estimates

- Theoretical (stoichiometric)
- Technical/Gross
- Commercial

definitions are not standard across studies!!

California RNG Supply Curves

What happens when we add carbon and renewable California RNG Supply by Source credits? \$100 \$90 \$80

Most sources of biogas are not commercial

About 8.1 BCF/year are commercially feasible with an LCFS credit of \$120/ton of carbon: 8.1 (total) = 0 (Landfill) +4.3 (Dairy) + 3.1 (WWTP) +1.7 (MSW) (50% of all transportation NG use in California²) (2.5% diesel use)

About 83.5 BCF/year are commercially feasible with an LCFS credit of \$120/ton of carbon and a RIN credit of \$1.78 per gallon of ethanol equivalent: 83.5 (total) = 50.8 (Landfill) + 16.3 (MSW) + 10.6 (Dairy) +5.8 (WWTP) (5X all transportation NG currently used in California²) (25% diesel use)

Barrier 1: Biogas specs for injections are the stringest

		power	Injection
Illustration for Landfill Diverted Waste	Blogas	"Treated" Biogas	Biomethane*
Gas Composition and Heating Value			0
CH4	62.0%	62.0%	98.5%
CO2	37.6%	37.6%	0.8%
O2, H2, N2, Others	0.4%	0.4%	0.7%
Heating Value (btu/scf)	625	625	(990+)
Two of the Key Trace Constituents			
H2S	300 ppm	1 ppm	1 ppm
Siloxanes	4,000 ppb	70 ppb	Non-detectable

Gas composition and trace constituent limits will/may differ by utility

Injection standards vary by company

Table 7-3 Basic Pipeline Quality Standards for Major California Distribution	utors
--	-------

Gas Component or Characteristic	Pacific Gas and Electric Company	Southern California Gas Company
Carbon dioxide (CO ₂)	≤1%	≤3%
Oxygen (O ₂)	≤0.1%	≤0.2%
Hydrogen sulfide (H ₂ S)	≤0.25 grains/100 scf	≤0.25 grains/100 scf
Mercaptan sulfur	≤0.5 grains/100 scf	≤0.3 grains/100 scf
Total sulfur	≤1 grain/100 scf	≤0.75 grains/100 scf
Water (H ₂ O)	≤7 lb/million scf	≤7 lb/million scf
Total inerts	No requirement	≤4%
Heating value	Specific to receipt point	970 – 1,150 Btu/scf
Landfill gas	Not allowed	No requirement
Temperature	60 – 100° F	50 – 105° F
Gas Interchangeability *		
Wobbe number	Specific to receipt point	Specific to receipt point
Lifting index	Specific to receipt point	Specific to receipt point
Flashback index	Specific to receipt point	Specific to receipt point
Yellow tip index	Specific to receipt point	Specific to receipt point

scf = Standard cubic feet

Btu = British thermal units

а

The various indices— Wobbe number, Lifting index, Flashback index, and Yellow tip index—are all means of determining the gas interchangeability (AGA, 1946)

Barrier 2: In the case of solid waste, it is cheaper to dump

Mind the scale!

Source: http://www.calrecycle.ca.gov/publications/Documents/1520%5C20151520.pdf

Barrier 3: For Manure Biogas

- Capital costs are high
- Productivity is low since feedstock has already been stripped of most CH4 in the cow.

Thank you!

Contacting the Authors:

<u>dpscheitrum@ucdavis.edu,</u> <u>ncparker@asu.edu,</u> <u>rdominguezfaus@ucdavis.edu,</u> <u>abmjaffe@ucdavis.edu</u>

Come and see our posters