

How is the methane leakage rate estimated?

1. EIA bottom up approach based on sample measurements and activity inventory data

2. EPA GHG emission inventory says 360BCF annually

4	773.9	717.4	722.4	717.4	714.4	721.5	730.
Natural Gas Systems	206.8	177.3	166.2	170.1	172.6	175.6	176.
Enteric Fermentation	164.2	168.9	171.3	168.9	166.7	165.5	164.
andfills	179.6	154.0	142.1	144.4	142.3	144.3	148.
Petroleum Systems	38.7	48.8	54.1	56.3	58.4	64.7	68.
Coal Mining	96.5	64.1	82.3	71.2	66.5	64.6	67.
Manure Management	37.2	56.3	60.9	61.5	63.7	61.4	61.
Wastewater Treatment	15.7	15.9	15.5	15.3	15.0	14.8	14.
Rice Cultivation	13.1	13.0	11.9	11.8	11.9	11.9	11
Stationary Combustion	8.5	7.4	7.1	7.1	6.6	8.0	8
Abandoned Underground Coal							
Mines	7.2	6.6	6.6	6.4	6.2	6.2	6
Composting	0.4	1.9	1.8	1.9	1.9	2.0	2
Aobile Combustion	5.6	2.7	2.3	2.2	2.2	2.1	2
field Burning of Agricultural							
Residues	0.2	0.2	0.3	0.3	0.3	0.3	0
etrochemical Production	0.2	0.1	+	+	0.1	0.1	0.
erroalloy Production	+	+	+	+	+	+	
Silicon Carbide Production and							
Consumption	+	+	+	+	+	+	
ron and Steel Production &							
Metallurgical Coke Production	+	+	+	+	+	+	
ncineration of Waste	+	+	+	+	+	+	0
ncineration of Waste International Bunker Fuels ^b	0.2	0.1	0.1	0.1	0.1	0.1	

3. EIA says Natural Gas Production in the US was ~23,000 BCF

Area: U.S.		Period	od: Annual	٢						
Download Series History	1 Definitio	Definitions, Sources & Notes								
Show Data By: Data Series	Graph Clear	2009	2010	2011	2012	2013	2014	View History		
Gross Withdrawals	۰ 🗠	26,056,893	26,816,085	28,479,026	29,542,313	30,005,254	31,895,427	1936-2014		
From Gas Wells	۰ 🗠	14,414,287	13,247,498	12,291,070	12,504,227	11,255,616		1967-2013		
From Oil Wells	۰ 🗠	5,674,120	5,834,703	5,907,919	4,965,833	5,427,676		1967-2013		
From Shale Gas Wells	۰ 🗠	3,958,315	5,817,122	8,500,983	10,532,858	11,896,204		2007-2013		
From Coalbed Wells	۰ 🗠	2,010,171	1,916,762	1,779,055	1,539,395	1,425,757		2002-2013		
Repressuring	۰ 🗠	3,522,090	3,431,587	3,365,313	3,277,588	3,331,456		1936-2013		
Vented and Flared	۰ 🗠	165,360	165,928	209,439	212,848	260,394		1936-2013		
Nonhydrocarbon Gases Removed	� □	721,507	836,698	867,922	768,598	722,527		1973-2013		
Marketed Production	۰ 🗠	21,647,936	22,381,873	24,036,352	25,283,278	25,690,878	27,271,326	1900-2014		
Dry Production	۰ 🗠	20,623,854	21,315,507	22,901,879	24,033,266	24,333,709	25,718,448	1930-2014		

4. Divide! 360/23,000 = 1.5%

UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS An Institute of Transportation Studies Program

Methane Leakage Update **Rosa Dominguez-Faus, Ph.D.**

Institute of Transportation Studies, University of California, Davis - May 2016

What do Independent **Studies Say?**

- Estimation methodology (top down vs bottom up analysis). In top down takes atmospheric samples, some sources not in the GHI inventory, such as abandoned gas wells¹ (Mary Kang Thesis 2014).
- 2. Sampling error. EPA is ignoring a small group of superemitters (Brand et al. 2014)
- 3. EPA might be underestimating leakage by 20-40%
- 4. Leakage rate is likely **1.85% 2.95%** in natural gas systems

Karion A et al. (2013) Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys Res Lett 40:4393-4397.

Miller SM et al. (2013) Anthropogenic emissions of methane in the United States. *PNAS* 110:20018–20022. O'Sullivan F, Paltsev S (2012) Shale gas production: potential versus actual greenhouse gas emissions. *Environ Res Lett* 7:044030. Allen DT et al. (2013) Measurements of methane emissions at natural gas production sites in the United States. *PNAS*

110:17768-17773.

Brandt AR et al. (2014) Methane Leaks from North American Natural Gas Systems. Science 343 733-735 Kang M, Nanno C., Reid M.C., Zhang X., Mauzeralla D.L., Celia M.A., Chen Y., Onstott T.C. "Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania." PNAS | December 23, 2014 | vol. 111 | no. 51 | 18173-18177

How does it affect the WTW of natural gas fuels?

WTW CI at 1.5% Leakage

- We can see majority of emissions come from the vehicle (grey).
- Methane in the vehicle (methane slip) contributes as much as upstream methane

- aspects

- higher vehicle methane slip

Contacting the Author: Rosa Dominguez-Faus (*rdominguezfaus@ucdavis.edu*)

