UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

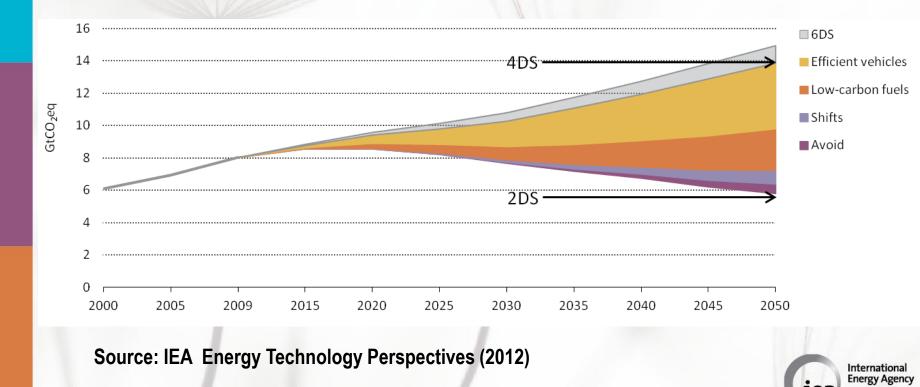
How vehicle fuel economy improvements can save \$2 trillion and help fund a long-term transition to plug-in vehicles

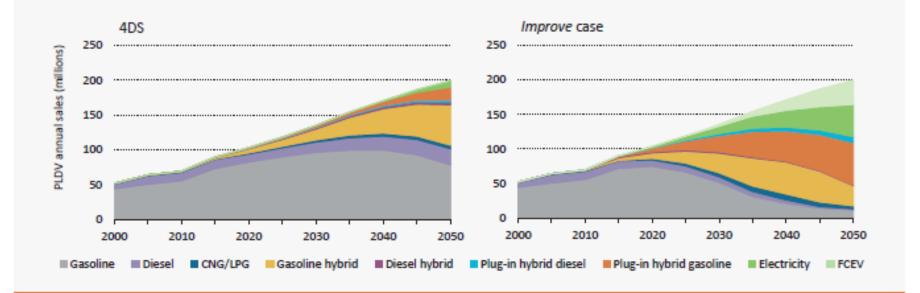
Policy Institute, NextSTEPS and GFEI Webinar November 7, 2013

Dr. Lewis Fulton, NextSTEPS Program, Institute of Transportation Studies University of California, Davis

www.steps.ucdavis.edu

To cover today

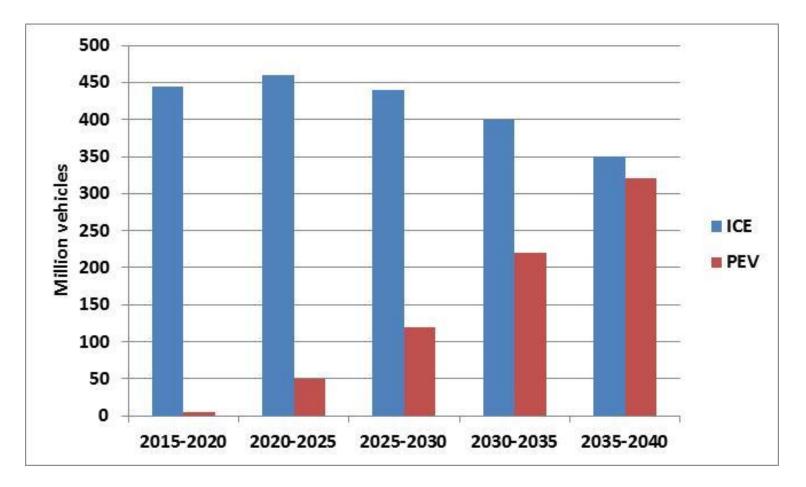

- Background: IEA two degree scenario
- Role of fuel economy (FE) improvement from Internal Combustion Engine (ICE) vehicles
- Role of plug-in electric vehicles (PEV)
- Relative costs and fuel savings from these technologies
- Policy implications
- Some takeaways


Deep Transport CO2 Reductions in IEA ETP-2012 2 Degree Scenario (2DS)

 FE improvement from ICE vehicles plays largest role, particularly through 2030

By 2050 automakers will need to sell mainly near-zero emission vehicles (plug-ins and fuel cells, or PEVs)

Figure 13.18 Global portfolio of technologies for passenger LDVs

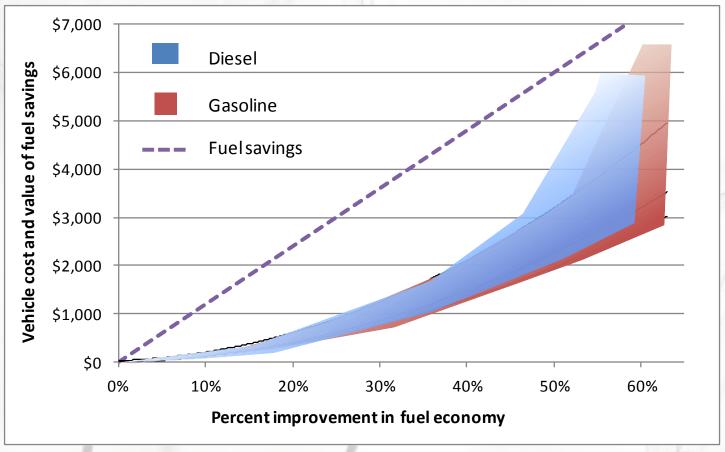

Key point

In the Improve case, electric, PHEV and FCEVs together account for nearly three-quarters of new vehicle sales in 2050.

> International Energy Agency

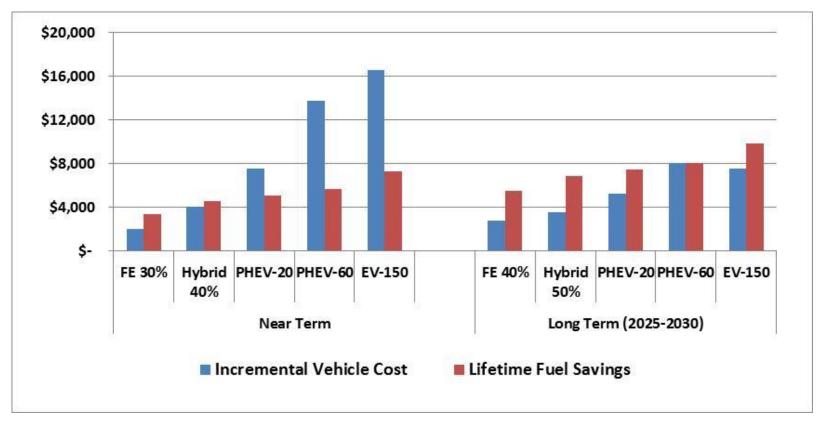
Source: IEA Energy Technology Perspectives (2012)

But the next 2-decades will likely be ICEdriven, even with rapid PEV growth



Note: this aligns with the IEA 2DS Scenario except with only 5 million PEV sales by 2020 instead of 20 million.

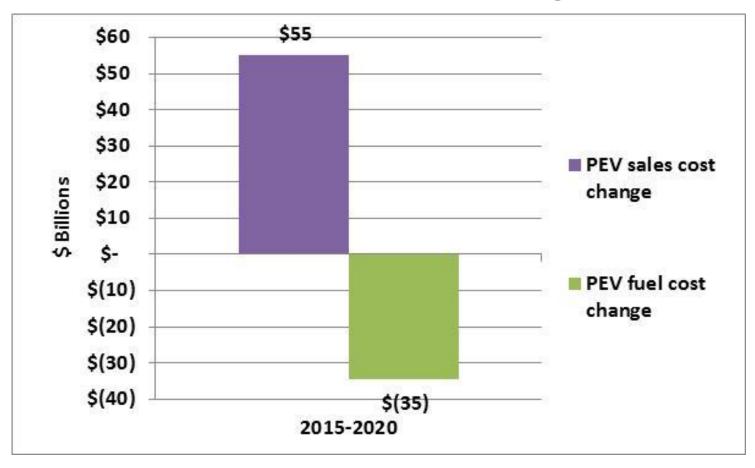
Fuel Economy Improvements are very costeffective


Fuel savings more than pays for fuel economy improvements in light-duty vehicles

International Energy Agency

Source: IEA Fuel Economy Roadmap, July 2012

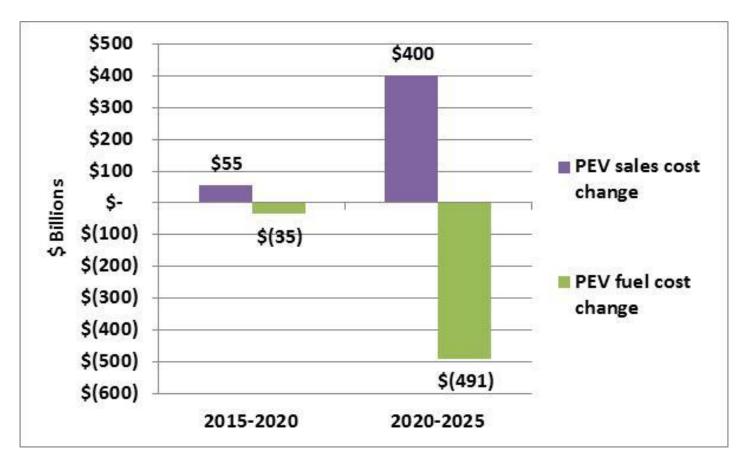
Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time



Notes: "FE 30%"=fuel economy improved by 30% in L/100km; "PHEV-20"= plug-in hybrid with 20 km electric range; fuel savings estimated over 160k kms of driving; all related to a base gasoline vehicle of 9 L/100km; oil prices \$100/bbl near term, \$130/bbl long term; battery costs decline over time from \$600 to about \$300/kWh

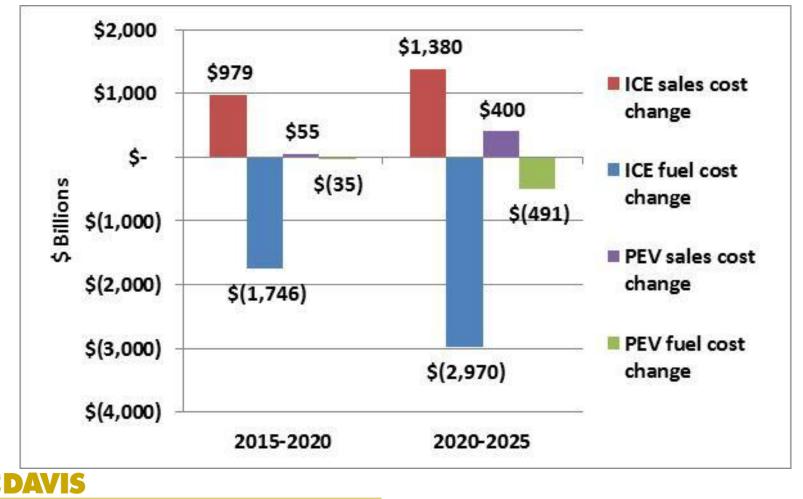
2015-2020: PEV sales cost is much higher than base vehicle, but saves fuel as well

For sales of 5 million PEVs with cost assumptions used here, vehicle cost increase is over \$50 billion, fuel cost savings \$20 Billion less



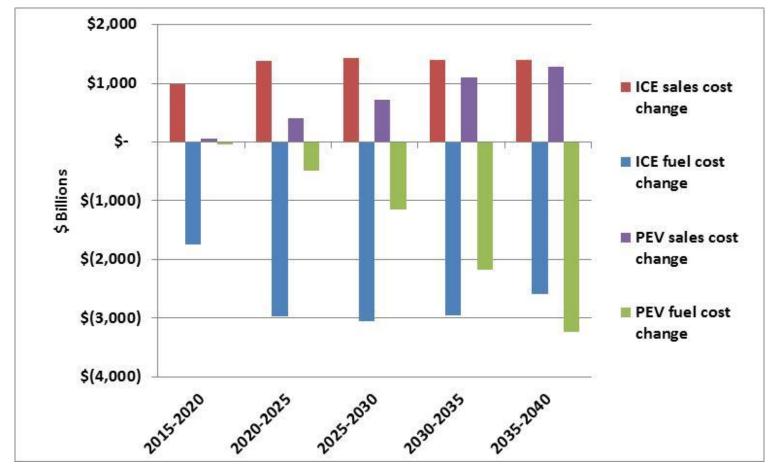
PEVs could break even or better (benefits > costs) in the 2020-2025 time frame

Vehicle cost increase exceeds \$450B for 50M in sales through 2025, though fuel savings is greater \$500B+



If we add ICE vehicle fuel economy savings into the mix, it changes the perspective

Fuel economy saves a net \$2.4 Trillion in the same time frame when PEV's may require incentives



SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

After 2025, PEVs become increasingly important, and increasingly cost-effective

2030-2040, Fuel economy has a net savings of \$2.7T, PEVs have a net savings of \$3.0T and rising

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Looking at CO2 tells a similar story

Fuel economy improvement provides bigger and cheaper CO2 reductions though 2035. Then PEVs prevail.

	2015-		2020-		2025-		2030-		2035-	
	202	20	202	25	203	30	203	35	204	40
CO2 savings from ICEs (Gt)		5.4		7.5		7.9		7.8		7.1
CO2 savings from PEVs (Gt)		0.1		1.1		3.0		6.1		9.7
Cost from ICEs (\$/t)	\$	(143)	\$	(212)	\$	(214)	\$	(215)	\$	(198)
Cost from PEVs (\$/t)	\$	211	\$	(81)	\$	(143)	\$	(175)	\$	(201)

Well-to-wheel CO2-eq emissions, cumulative over each 5 year period. Assumes 2.7 kg/L liquid fuels, 400 dropping to 200 g/kWh for electricity.

Initial takeaways from the analysis

- 1. Compared to today's vehicles, future conventional vehicle fuel economy could be doubled in MPG terms
 - Globally, roughly a \$3trillion investment in improved fuel economy would result in a \$5trillion fuel savings, for a \$2 trillion net savings
- 2. PEVs are estimated to have an incremental purchase cost of up to \$500 billion between 2015-2025
- 3. There are many factors affecting this, including relative fuel prices and the rate of cost reduction of key components such as batteries.
- 4. As we find today, consumers may still value strong financial incentives to encourage PEV purchases for some time

Who pays and who benefits?

- Much of the LDV fuel economy improvement expected over the coming years is already required (at least in OECD countries)
- Vehicle incremental costs are directly born by manufacturers, but ultimately by consumers
 - Also true for PEVs, but these costs are so high that it seems society must contribute in order to build a market
- Fuel savings accrue directly to consumers, though slowly over vehicle life (this may be several owners)
- Consumers may not fully value fuel savings, and will not likely perceive the "contrapositive case"

Thought experiment: Transition funding via a feebate

- There will be around 1 billion ICE vehicles sold worldwide from now to 2025
- This scenario has 50 million PEVs on the road by 2025, 5% of the world fleet.
- If \$500B were spent to incentivize PEVs through 2025, This would average \$10,000 per vehicle (!).
- This subsidy equals \$500/vehicle for each of the world's 1 billion ICE vehicle sales over this time frame.
- A feebate system could be structured around this.
- Alternatively, a tax of around \$0.07/L (\$0.25/gal) would cover this transition cost.

Some Conclusions

- Strong fuel economy improvements will save drivers over \$2 Trillion over the next 10 years, and much more in years after.
- Launching PEVs worldwide will initially have higher purchase costs, of a quite uncertain magnitude; \$500B reflects very large volume sales and could be considered a high estimate.
- One can imagine a feebate system that generates a sustainable funding stream for the introduction of large numbers of PEVs and other low-carbon vehicles.
- Fuel economy could get us half way to a low carbon LDV system, but we will likely need PEVs to get the rest of the way, especially after 2030.
- PEVs are projected to become more cost-effective than fuel economy improvement after 2030 or 2035.
- Getting there will require building ZEV markets starting now...

Potential additional research

- Could add more advanced vehicle types (e.g. FCEVs), though not expected to significantly change the results.
 - Sensitivity analysis on the assumptions in this paper, particularly if done systematically, would be useful
- Should/can we identify a total incentive amount for PEVs that society can get behind, and how to generate sustainable funding for this?
- What role do other policies play (e.g. ZEV mandates, FE standards) and how do they shift costs and benefits?
- How would a feebate interact with fuel taxes, fuel economy standards and ZEV-type programs? Are they complementary?

Thank you!

Questions welcome

Feel free to contact me at Imfulton@ucdavis.edu

