

DAIMLER

Sustainable Pathways for Trucking DTNA Recommendations for Rulemaking

STEPS Workshop

David Kayes
May 13, 2015

Mercedes-Benz

Our longtime mission...

..but fuel economy is constrained by NOx

Are the 80 to 90% reduction targets achievable?

Relationship between Fuel Economy Improvement and Fuel Consumption Reduction

Second Law Limit Vehicle	
<i>Engine</i>	Second law, maximum theoretically possible
<i>Aero CdW</i>	Less than $\frac{1}{2}$ of best vehicle on the market
<i>Transmission & Axle</i>	No friction, best axle and gearing available
<i>Auxiliaries</i>	No power consumption
<i>Overall Rolling Resistance</i>	Steel wheels

Electric heavy-duty vehicle
200 gallon diesel equivalent range = approx. 75,000 lb. tare weight
At best, 5,000 lb. left for freight

Bottom line: No, the tractor targets exceed what a tractor may feasibly achieve.

And regulations must reflect the fact that—even if technology costs and feasibilities were not issues—not all vehicles can be Super Truck.

Bottom line: for any regulatory subcategory, standards must be based on technologies' FCRs times their achievable market penetration rates.

Multiple approaches to reduce braking losses

Illustration courtesy of Volvo Trucks

.. and energy kinetic energy optimization erodes energy recoverable from waste heat.

Waste-Heat Recovery system on A-sample SuperTruck prototype.

Cooling System

→ **Most of benefit is derived at minimal hardware, weight, and cost**

The optimal approach is a balance of vehicle GHG reductions and more.

