# Sustainable Freight Transportation Systems: Operations, Technology and Policy

#### Miguel Jaller, Ph.D.

Assistant Professor Department of Civil and Environmental Engineering University of California, Davis

> May 13, 2015 STEPS Symposium, ITS



# Economic, Energy and Environmental Impacts of Freight Transportation



The prices of all we consume are impacted by freight transportation rates Truckers that (have to) drive in congestion experience high operating costs Congestion drives away freight activity Increasing the price of goods Reducing the competitiveness of the area 1/10 of employees are in freight / logistics



#### In the US:

5% of the GDP (Kearney, 1976)

In Canada:

6% (smallest cities) to 18% (large cities) of personal income

#### In Colombia:

22% of the total cost of commodities Could be 39% for imports and 36% for exports

Freight transportation costs are:-

fuel (37%) tolls (17%) maintenance and tires (16%) wages (11%) insurance (7%) administration (6%) capital (5%) others (1%)



# Transportation consumed: 28.5% of the total energy 67.9% of the petroleum

54% of the carbon monoxide Transportation produced: 36% of the nitrogen oxide 22% of the volatile organic compounds 1.4% of the sulfur dioxide



- The Laboratoire d'Economie des Transports conducted a comprehensive study in three French cities:
  - Dijon (240,000) Bordeaux (750,000) Marseilles (1,050,000)



|                                                           | Traffic measured in daily vehicle-km |           |            |
|-----------------------------------------------------------|--------------------------------------|-----------|------------|
| Segment of daily traffic on the study area                | Bordeaux                             | Dijon     | Marseilles |
| Pick-ups and deliveries + urban management traffic except |                                      |           |            |
| shopping trips                                            | 623,000                              | 200,600   | 790,000    |
| %                                                         | 4%                                   | 6%        | 6%         |
|                                                           |                                      |           |            |
| Shopping trios (inner, entering, outgoing)                | 1,403,000                            | 236,600   | 1,750,000  |
| %                                                         | 9%                                   | 7%        | 13%        |
| % Urban goods movement                                    | 13%                                  | 12%       | 19%        |
| Freight through traffic (harbor traffic in the case of    |                                      |           |            |
| Marseilles)                                               | 544,000                              | 68,400    | 180,000    |
| Private individuals trips (other than shopping) (inner,   |                                      |           |            |
| entering, outgoing)                                       | 13,360,000                           | 3,020,000 | 10,500,000 |
|                                                           |                                      |           |            |
| Total                                                     | 15,930,000                           | 3,525,600 | 13,220,000 |

|                                                |                               | Marseilles: Peak concentrations (in town center, in $\mu$ g/m3) |     |     |     |            |      |
|------------------------------------------------|-------------------------------|-----------------------------------------------------------------|-----|-----|-----|------------|------|
|                                                |                               | CO                                                              | NOx | HC  | PM  | <b>SO2</b> | CO2  |
| Average daily<br>traffic (ADT)                 | All traffic                   | 172                                                             | 17  | 21  | 1   | 0.6        | 3005 |
|                                                | Private vehicles              | 150                                                             | 10  | 17  | 0.5 | 0.4        | 2140 |
|                                                | UGM                           | 25                                                              | 7   | 4   | 0.5 | 0.2        | 826  |
|                                                | FTT (freight through traffic) | 0.6                                                             | 2   | 0.3 | 0.1 | 0.05       | 178  |
| UGM (Urban goods movement) 15% 41% 19% 50% 33% |                               |                                                                 |     | 27% |     |            |      |
| (UGM + FTT) 15% 53% 20% 60% 42%                |                               |                                                                 |     | 33% |     |            |      |

## In Medellín...



Source: Adapted from the Emissions Inventory 2011



## What can we do?



# Many solutions for urban freight transport









# California: Technology and Regulations



California



#### Source:

California Air Resources Board (2015). Sustainable Freight: Pathways to Zero and Near-Zero Emissions. Discussion Draft

#### New York: Off-Hour Deliveries



# Off-hour delivery program in New York City

Implementing various forms of off-hour delivery in Manhattan leads to:

- Travel time savings to all highway users of about 3-5 minutes per trip
- Travel time savings to carriers that switch to the off-hours of about 48 minutes per delivery tour
- Savings in service times (per tour) could be up to 1-3 hours

Economic savings could be between \$100 and \$200 million/year



#### **Environmental Pollution Reductions: Simulations**

| TOTAL/YEAR |          |          |          |                              |  |
|------------|----------|----------|----------|------------------------------|--|
| Scenario   | CO       | НС       | NOx      | $\mathbf{D}\mathbf{M}$ (leg) |  |
| % OHD      | (tonnes) | (tonnes) | (tonnes) | r wi <sub>10</sub> (kg)      |  |
| 6.49%      | 101.20   | 24.05    | 3.00     | 20.29                        |  |
| 14.10%     | 169.58   | 28.53    | 8.22     | 48.81                        |  |
| 20.90%     | 202.75   | 39.97    | 11.82    | 69.99                        |  |
| 25.34%     | 253.14   | 56.56    | 15.04    | 90.09                        |  |
| 29.07%     | 383.81   | 55.76    | 26.33    | 149.86                       |  |

#### PER RECEIVER/YEAR

| %<br>OHD | VMT<br>(voh mi) | VHT<br>(veb-brs)            | CO (kg) | HC (kg) | NOx (kg) | PM10<br>(kg)                   |
|----------|-----------------|-----------------------------|---------|---------|----------|--------------------------------|
| 6 4004   |                 | ( <b>ven-ms</b> )<br>/38.20 | 10.56   | 3 10    | 0.58     | $\frac{(\mathbf{Kg})}{0.0030}$ |
| 0.49%    | 540.93          | 430.20                      | 19.30   | 1.01    | 0.30     | 0.0039                         |
| 14.10%   | 549.40          | 207.09                      | 14.90   | 1.81    | 0.72     | 0.0043                         |
| 20.90%   | 551.69          | 195.51                      | 12.05   | 1.88    | 0.70     | 0.0042                         |
| 25.34%   | 542.89          | 233.92                      | 12.41   | 2.12    | 0.74     | 0.0044                         |
| 29.07%   | 1,052.06        | 244.31                      | 16.40   | 1.41    | 1.13     | 0.0064                         |



# Key participants

# Sysco:

31 OHD routes/week (18% of their routes, 171) delivering to 140 unassisted offhour delivery customers

Wakefern:

♦ 5 OHD routes/day (25% of their total)

Duane Reade:

Approximately 120 of their 160 Manhattan stores receive OHD on a regular basis

Dunkin Donuts:

72 stores out of 121 in Manhattan

Beverage Works (Red Bull):

Has approximately 130 routes in the NY Metro, 22% are OHD



# Mexico City: Freight Demand Management



# In Mexico

|          |   | Scenarios                                                     | Coding               | *            |
|----------|---|---------------------------------------------------------------|----------------------|--------------|
| veries   | 1 | a) 5% shift                                                   | M2-E1a-5%            |              |
|          |   | b) 5% shift + 10% speed                                       | M2-E1b-5%-10%vel     |              |
|          |   | c) 5% shift + 20% speed                                       | M2-E1c-5%-20%vel     |              |
| eli      |   | a) 10% shift                                                  | M2-E2a-10%           |              |
| r d      | 2 | b) 10% shift + 10% speed                                      | M2-E2b-10%-10%vel    |              |
| ΠΟ       |   | c) 10% shift + 20% speed                                      | M2-E2c-10%-20%vel    |              |
| )ff-h    | 3 | 5% shift + 10% speed + 1% increase stops per tour             | M2-E3-5%-10%vel+1%   | $\checkmark$ |
| 0        | 4 | 25% shift + 20% speed + 5% increase stops per tour            | M2-E4-25%-20%vel+5%  | $\checkmark$ |
| bs       | 1 | a) 1% decrease empty trip distances                           | M4-E1a-1%            | $\checkmark$ |
| , tri    |   | b) 5% decrease empty trip distances                           | M4-E1b-5%            | $\checkmark$ |
| 2 pt     |   | 1% decrease empty trip distances + 1% increase stops per tour | M4-E2-1%+1%          | $\checkmark$ |
| E        | 3 | 25% decrease empty trip distances                             | M4-E3-25%            | $\checkmark$ |
|          | 1 | a) 1% decrease travel distance                                | M5-E1a-1%dist        | $\checkmark$ |
| es       |   | b) 5% decrease travel distance                                | M5-E1b-5%dist        | $\checkmark$ |
| out      | 2 | a) +10% speed                                                 | M5-E2a-10%vel        |              |
| Truck ro |   | b) + 20% speed                                                | M5-E2b-20%vel        |              |
|          | 3 | a) 1% decrease travel distance + 10% speed                    | M5-E3a-1%dist+10%vel | $\checkmark$ |
|          |   | b) 5% decrease travel distance + 20% speed                    | M5-E3b-5%dist+20%vel | $\checkmark$ |
|          | Δ | 10% decrease travel distance + $20%$ speed                    | M5_F4_10%dist+20%vel | $\checkmark$ |

| Type of service    | Average<br>stops | Average tour<br>length | Kms/ stop | Number of<br>vehicles | Total yearly travel<br>distances |
|--------------------|------------------|------------------------|-----------|-----------------------|----------------------------------|
| Federal public     | 2.10             | 62.80                  | 29.90     | 104,631               | 1,042,215,375                    |
| Local public       | 1.80             | 49.60                  | 27.56     | 33,220                | 154,807,413                      |
| Mercantile private |                  |                        |           |                       |                                  |
| (< 100 vehicles)   | 3.80             | 70.60                  | 18.58     | 375,022               | 5,607,436,695                    |
| Mercantile private |                  |                        |           |                       |                                  |
| (100-500 vehicles) | 23.80            | 56.50                  | 2.37      | 62,897                | 752,630,700                      |
| Mercantile private |                  |                        |           |                       |                                  |
| (>500 vehicles)    | 22.20            | 48.10                  | 2.17      | 49,224                | 501,451,334                      |
| Total              |                  |                        |           | 624,995               | 8,058,541,517                    |



#### Traveled distances and times





#### Emissions





# Final Thoughts



Freight traffic is a major consumer of resources and a major producer of environmental externalities

Transportation consumed:

28.5% of the total energy and 67.9% of the petroleum

Transportation produced:

♦ 54% of carbon monoxide and 36% of nitrogen oxide

22% of volatile organic compounds

1.4% of the Sulfur dioxide

Freight transport contributes a large portion of these numbers



## Operations, Technology and Policy

- Can help reduce the impact of urban freight transport
  - Technology and vehicle improvements need to be combined with operational measures
  - These can help reduce a considerable amount of externalities



#### References

- Lena, T.S., V. Ochieng, M. Carter, J. Holguín-Veras, and P. Kinney (2002) "Elemental Carbon and PM2.5 Levels in an Urban Community Heavily Impacted by Truck Traffic," Environmental Health Perspectives, Vol. 110 (10), pp. 1009-1015.
- Segalou, E., Ambrosini, C. and Routhier, J.L. (2003) "The Environmental Assessment of Urban Goods Movement" Chapter 15 in City Logistics III, pp. 215-228 (E. Taniguchi and R. Thomson, Editors)
- Rizet, C. (2003) "Energy consumed in freight transport: Estimates from shipper surveys" Paper presented at the 2003 Association for European Transport, Strasbourg, France.
- Bureau of Transportation Statistics (2009) http://www.bts.gov/publications/transportation\_statistics\_annual\_report/2009/pdf/entire.pdf
- Bureau of Transportation Statistics (2009). 2007 Commodity Flow Survey Preliminary Results. <u>http://www.bts.gov/publications/commodity\_flow\_survey/preliminary\_tables\_december\_2008/index.html</u>
- Borken-Kleefeld, J., Berntsen, T. and Fuglestvedt, J. (2010) "Specific Climate Impact of Passenger and Freight Transport". Environment Science & Technology. Vol 44. No. 15, 2010, pp. 5700-5706
- Jaller, M., J. Holguín-Veras, and S. Hodge (2013). Parking in the City: Challenges for Freight Traffic. Transportation Research Record (TRR), Journal of the Transportation Research Board. (2379): 46-56.
- Jaller, M., and J. Holguín-Veras (2013). Comparative Analyses of the Stated Behavioral Responses to Off-Hour Delivery Policies. Transportation Research Record (TRR), Journal of the Transportation Research Board. (2379): 18-28.
- Jaller, M., S. Sánchez, J. Greene and M. Fandiño (2015). Quantifying the impacts of sustainable city logistics measures in the Mexio City Metropolitan Area. In review.



Thank you! Questions! mjaller@ucdavis.edu

