Understanding the role of transportation in meeting California’s greenhouse gas
emissions reduction target: a focus on technology forcing policies, interactions with the electric sector
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Investments in infrastructure

« Marginal abatement cost (MAC) curves have become a very
popular tool in the policy world to answer this question, since

and mitigation costs

Saleh Zakerinia, Dr. Chris Yang, Dr. Sonia Yeh, Dr. Joan Ogden

Institute of Transportation Studies, University of California, Davis —May 2016

* PR: Progress ratio
 LR: Learning rate
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 What is the impact of technology-forcing policies in the
transportation sector on the entire economy and other sectors?

« What are the possible global implications of different countries’
attempts to promote uptake of alternative fuel vehicles?

 What are the implications of various global learning and
deployment scenarios for California?

 What is the role of electricity and hydrogen in scenarios in
which the benefit for learning are share between different cars?

 How can we account for the seasonal and daily variability of
supply and demand in order to develop expansion plans of the
electricity system with a high penetration of renewables and
taking into account the existence of energy storage systems
and Evs?

 How can the shift to electric vehicles help reduce GHG
emissions and what is the impact of EVs on the electricity

* In the proposed methodology —the same as in the real world—
technology-forcing policies play a very crucial role in imposing
the learning process and consequently cost reduction of

emerging technologies.
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« With learning adoption of hybrid vehicles as well as fuel cell
vehicles increase significantly.

* |n 2050 alternative fuel vehicles become competitive with the
conventional vehicles
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Introduction of a CO2 tax (price- based) and the introduction of a
carbon cap system (guantity- based)

« Transportation sector is the most cost-effective sector for
emissions reduction.

« Many of transport end-uses rely (in part) on the same fuels to
decarbonize (i.e. biofuels).

* In the future work, we increase the spatial and temporal resolution

of the CA-TIMES model electricity sector in order to include a
representation of the Western US electricity grid into the long-term
energy system model of California

SyStem? Calculate the new cumulative il B — il Th . . - - . - -
. . . . . |capaci : : gl * The spatial modeling addition (inclusion of the entire WECC) will
. . |capacity and new cost of learning . =11 1 | (N demand timeslice ..o P
Wh?t IS ”;Ie ImltohaCt 3f ﬂf_ﬂb'efCél\?fng Onttgeltrans._portipor: ] e for e i i '11 - o | enable the CA-TIMES model to accurately represent electricity
SECIor and on the adoption © S (given the learning effect)’ No tocciogesd | iImports/exports, reduction in the variability of renewable energy
o . . . . _ H =2 - - - .
What is the contribution of different measures (sectors, end? ¢ f due to geographic aggregation, and track spatial locations of power
uses, technologies) in reducing GHG emissions up to 20507 Yes | P —— e sery plants and related emissions
 What influences abatement cost curves and to what extent? N demanssmesteeprotie -l . . L . .
° e stment in ith iteration™ « we can model benefits of the electric grid with high penetration of

(e.g. technology availability, cost assumptions)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

Investment in i-1th iteration <=
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 Electricity sector in CA-TIMES has 48 timeslices (6
representative months and 8 representative hours in each
day)

« Load profile of commercial and residential service demands
are defined

« We can implement Load shifting and Peak shaving in CA-
TIMES.
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renewables to optimally charge electric vehicles. On the top of
these transportation sector related results, we also study how the
Implementation of smart grid and flexible demand in the building
sector can benefit the grid and utility companies.

* We Investigate how cost reduction in fuel production (hydrogen and

electricity) and storage technologies can facilitate the adoption of
alternative fuel vehicles and pave the road for low-carbon energy
future
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