PRESENTATION OUTLINE

• SuperTruck overview
• Project teams’ status
• Outcomes
• Resources
SIGNIFICANT FINDINGS

• Vehicle system focus is important:
 ▪ Vehicle-level targets drive more innovation compared to component-level targets;
 ▪ Synergies and dis-synergies and the corresponding design challenges (e.g., emissions aftertreatment and multiple waste heat recovery systems);
 ▪ Systems optimized for most frequent operation, not maximum load or performance.

• Technologies with greatest near-term potential are already being commercialized:
 ▪ Matched engine – transmission, including downspeeding;
 ▪ Improved aerodynamic treatments for tractor and trailer.

• Grade is a significant factor in fuel consumption and in the potential for savings.

• Hybrid and predictive cruise / coast compete for same energy savings:
 ▪ Predictive cruise is simpler (software only), cheaper, and likely to see greater driver acceptance.
SUPERTRUCK OVERVIEW

• Goals:
 ▪ Achieve 50% engine brake thermal efficiency (BTE)
 ◦ Dyno test representative of flat road, 65 mph
 ▪ Demonstrate 50% improvement in freight efficiency (FE), measured in ton-miles per gallon
 ◦ Class 8 tractor trailer, 65,000 lbs
 ◦ ≥ 20% of improvement from engine
 ◦ Drive cycle defined by the industry team
 ▪ Identify pathways toward a 55% BTE HD diesel engine

• Four cooperative R&D agreement awards to integrated teams led by
 ▪ Cummins Inc. with Peterbilt (ARRA Funded)
 ▪ Daimler Trucks North America (ARRA Funded)
 ▪ Navistar, Inc
 ▪ Volvo Trucks North America

• Total project funding, DOE + Industry = $284 Million
SCOPE OF RESEARCH

- Engine / powertrain system:
 - Improved in-cylinder combustion,
 - Engine mechanics,
 - Friction reduction,
 - Downsizing,
 - Downspeeding,
 - Waste heat recovery (turbo-compounding and organic Rankine cycle),
 - Emission control,
 - Materials,
 - Electrification and intelligent control of accessories, and
 - Reduced ancillary loads.
- Engine and vehicle controls.
- Hybridization.
- Drivetrain efficiency:
 - Advanced transmissions - continuously variable (CVT), automated manual (AMT), dual clutch, etc., and
 - Axles.
- Fuels (non-food feedstocks).
- Lubricants.
- Aerodynamic drag reduction.
- Rolling resistance reduction.
- Weight reduction.
- Idle / hotel load reduction.
CUMMINS / PETERBILT: PROJECT COMPLETE

- Demonstrated **51% BTE** engine on dyno, including WHR
- Organic Rankine cycle WHR from EGR, exhaust, coolant, and charge air
- Validated analytical roadmaps to 55% BTE engine for diesel and dual fuel approaches
- Single clutch AMT
- Net weight reduction: 1,305 lb
- 46% reduction in aerodynamic drag coefficient – matched tractor and trailer
- Demonstrated freight efficiency improvements:
 - **76%** in long-haul drive cycle test
 - **86%** in 24-hr cycle test (includes overnight hotel loads)
 - lithium ion battery APU
- Achieved **10.7 mpg** (65 mph cruise)

Image source: D. Koberlein, 2015 AMR presentation ACE057.
DAIMLER: PROJECT COMPLETE

- Demonstrated **50.2% BTE** engine + WHR
 - Downsized
 - Improved combustion & turbocharger
- Parallel hybrid: 120 kW motor, 2.4 kWh battery
- Electrified auxiliary systems
- WHR – ORC electrical power for:
 - HVAC and other hotel loads
 - hybrid motor or battery recharge
- Trailer roof solar panels
- Tractor redesign + trailer aero pkg: 54% reduction in drag coefficient
- 12-speed AMT; 6x2 axle
- Net 2,800 lb weight reduction
- eCoast

- Demonstrated freight efficiency improvements
 - 96-120% over drive cycle
 - 115% over 24-hr duty cycle
- Achieved **12.7 mpg**

DOE: $39.6M
Industry: $39.6M
VOLVO: IN PROGRESS

- Began June 2011; expected completion June 2016
- Priority: truck/engine integration
- Demonstrated 48% BTE (phase 1) ahead of schedule
 - Downsized, down-sped
 - Turbo-compound
 - Volvo-designed Rankine WHR:
 - 5 stage axial turbine
 - Significant size reduction
- Phase 2 engine **48% BTE without WHR**: build complete, integration and test in progress
- Verified combustion simulation for PPC; simulated 56.2% BTE capable engine
- Dual clutch transmission
- Predictive cruise + eCoast
- LED lighting and light wiring harness
- Aggressive weight reduction
- Electrified HVAC
- Tractor roof solar panels
- Battery power for hotel loads
- First demonstrator: **43%** improvement in freight efficiency

DOE - $19M
Volvo (U.S.) - $19M
Sweden - $15M
Volvo (Sweden) - $15M
NAVI STAR: IN PROGRESS

- Initial concept – series hybrid, 360 kW, 700 V – was dropped
 - Expensive, heavy, complex
 - Modest fuel savings attributed to hybridization in this drive cycle
- Current concept - stop-start, 48 V motor/gen, 48 V NiZn batteries
- Demonstrated **48.3% BTE without WHR**
- Projected 50.7% BTE engine:
 - Downsize
 - Downspeed
 - Driven eturbo
- ORC WHR possible for 55% BTE goal
- 6x2 drivetrain with direct drive Eaton Ultrashift
- “Smart” subsystems (cruise, auxiliaries)
- Tractor and trailer aerodynamics
- Aggressive weight reduction targets from tractor (3,250 lb) and trailer (3,700 lb); net not known
RESULTS: COMMERCIALIZED TECHNOLOGIES

Peterbilt EPIQ package
- Aerodynamic enhancements and closeouts
- PACCAR MX-13 engine + Fuller Advantage automated manual transmission + optimized communication technology
- SmartTire Tire Pressure Monitoring System (pressure and temp)
- Low rolling resistance tires
- SmartAir no-idle A/C

International ProStar ES
- Aerodynamic enhancements
- Optional Cummins Eaton SmartAdvantage: downspeed Cummins ISX-15 + 10-speed Eaton AMT + efficient axles
RESULTS: COMMERCIALIZED TECHNOLOGIES

Freightliner Cascadia Evolution options
- Aerodynamic enhancements (standard)
- Wide-base tire options
- Integrated powertrain: DD15i + DT-12 direct drive AMT with common controller
- Intelligent powertrain management – terrain maps integrated into engine and transmission functions
- eCoast – disengages transmission when coasting
- RunSmart predictive cruise

Volvo
- “The SuperTruck first demonstrator propshaft, combustion system, axles, down-speeding technology (and more) will be in production soon, some are already available for purchase.” (Gibble, 2015 AMR)

XE package:
- Downspeeding + high torque
- Adaptive gearing
NEAR TERM COMMERCIALIZATION

- Technologies already available:
 - Advanced aerodynamic designs,
 - Enhanced trailer skirts,
 - Integrated and downsped powertrains,
 - Intelligent controls, including torque management,
 - Predictive cruise,
 - eCoast,
 - Next generation wide base single tires.

- Promising technologies that require additional product development to improve market acceptance, cost, durability, and reliability:
 - Additional aerodynamic improvement,
 - Gap improvement,
 - Trailer boat tail enhancements,
 - Light weight drive shafts and frame rails,
 - Tire auto inflation,
 - Engines designed for higher thermal efficiency, including parasitic loss reductions,
 - Advanced AMTs,
 - Improved aftertreatment.
PERSPECTIVE ON MID- TO LONG-TERM COMMERCIALIZATION

- Technologies with long-term potential that require additional development to determine true market viability and cost effectiveness:
 - Active aerodynamics,
 - Waste heat recovery (Rankine cycle),
 - Controllable or electrified auxiliaries,
 - Mild hybridization,
 - Technologies for 55% efficient engine,
 - Radical tractor and trailer designs,
 - Further weight reduction (aluminum, carbon fiber),
 - Novel tire compounds,
 - Solar energy harvesting.

- Market complexity limits transferal of research results to real-world fuel savings:
 - e.g., tractor vs trailer: manufacturers and ownership; useful lifetimes and replacement schedules; fleet size (dry van trailers outnumber tractors 3:1)
 - Multiple trailer types and uses (dry van, reefer, container, flat bed, etc.);
 - Aerodynamic drag reductions comparable to the SuperTruck demonstrations (~50%) should not be expected in production vehicles soon:
 - Requires matched tractor and trailer;
 - Some ST concepts not necessarily suitable for real world use – would need redesign and test;
 - Potential trailer benefits 2-3x those obtainable from tractor, even with complete redesign.
PROJECTED BENEFITS

- Analysis performed in 2012 assuming technologies to meet goals would be fully commercializable.
- Results for two cases:
 - Low potential – high technology cost and reference oil price,
 - High potential – low technology cost and high oil price,
 - Technology cost estimates based on TIAX for NAS (2009),
 - Baseline fuel consumption and oil prices from AEO 2011 and 2012 early release.
- Updated analysis underway with gradual technology deployment based on current understanding of commercial potential.
- Market adoption rates vary according to annual mileage and associated payback period; new truck population divided into 11 mileage cohorts.

Source: DOE SuperTruck Program Benefits Analysis Final Report, December 2012
(https://anl.box.com/s/3dfq5bvqrjni0veon68by33im7gsgchn)
QUESTIONS?
RESOURCES

• Source references:

• See Also:
 ▪ http://energy.gov/eere/vehicles/vehicle-technologies-office
 ▪ OEM press releases.

• Contacts:
 ▪ abirky@energetics.com
 ▪ roland.gravel@ee.doe.gov