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Results Comparing battery production emissions to operation emissions for several PEV technologies
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Automotive Battery Cycles By Chemistry Lithium Chemistry
Composition of lithium batteries and material GHG emissions by chemistry: Battery cycles by chemistry - Abbreviations: Lithium Manganese Oxide = LMO, Lithium
(a) mean composition of traction batteries by components (% of total mass) Nickel Manganese Cobalt Oxide = NMC, Lithium Nickel Cobalt Aluminum Oxide = NCA,
(b) mean GHG emissions from materials by chemistry (% of total battery Lithium Iron Phosphate = LFP, Lithium Manganese with Titanate Oxide Anode = LTO
production emissions)
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Conclusions: Battery emissions in the context of electric mobility N o A (2015)
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deployment of PEVs in the U.S. and globally, as well as shape
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