
A transition to electric vehicles is under way.  Fueled by rapidly decreasing 
lithium battery prices and supportive policies/incentives, electricity 
increasingly seems the most viable, near-term, low-carbon, transportation 
fuel pathway. Battery production plays a significant role in the cradle-to-gate 
impacts of PEV manufacture, and battery life-time and ageing have important 
impacts on PEV on-road emissions performance. We compare life cycle GHG 
emissions from lithium- based traction batteries for vehicles using a 
probabilistic approach based on 24 hypothetical vehicles modeled on the 
current US market.  We simulate life cycle emissions for five commercial 
chemistries and discuss life cycle GHG emissions implications. 
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• Li-ion battery production can be responsible for 35-40% of production related

climate emissions for a 75-100 mile range BEV.R1

• GWP for battery production is dominated by a few, well-identified materials,
including aluminum and graphite, in addition to the active cathode material.R2

• A wide range of production carbon emission estimates have been published
for li-ion chemistries, from 32-487 kg CO2/kWh.R3
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b.

Composition of lithium batteries and material GHG emissions by chemistry: 
(a) mean composition of traction batteries by components (% of total mass) 

(b) mean GHG emissions from materials by chemistry (% of total battery 
production emissions) 
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Monthly US PEV Sales by All-Electric Range 
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Battery cycles by chemistry - Abbreviations: Lithium Manganese Oxide = LMO, Lithium 
Nickel Manganese Cobalt Oxide  = NMC, Lithium Nickel Cobalt Aluminum Oxide = NCA, 

Lithium Iron Phosphate = LFP, Lithium Manganese with Titanate Oxide Anode = LTO 

This research highlights a number of factors that influence the 
performance of PEVs from a GHG emissions standpoint; these 

findings can be used to inform the regulatory landscape for 
deployment of PEVs in the U.S. and globally, as well as shape 

engineering decisions for vehicle OEMs. This probabilistic 
approach suggests that the exclusion of production-related 

emissions for PEVs and realistic operating performance may 
ignore tradeoffs in production and operation emissions of PEVs, 
and places the contribution in context of other significant drivers 

of operation phase PEV GHG emissions.
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Comparing battery production emissions to operation emissions for several PEV technologies 


