
•  In the cluster approach, a group of technologies share a 
common component –“key technology”– which is subject to 
learning.  

•  Only the investment costs undergo the learning process. 
Therefore, we only attribute capital cost to key component 
technologies.  
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•  In linear optimization models, the cost reduction of technology 
based on experience requires the use of technology as a trigger 
that contradicts with the original paradigm of TIMES (selecting 
least-cost technology)  

•  Methods have been developed to implement endogenous 
learning in linear models using MLIP, which is computationally 
burdensome 

•  In the proposed methodology –the same as in the real world– 
technology-forcing policies play a very crucial role in imposing 
the  learning process and consequently cost reduction of 
emerging technologies.  
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•  TIMES (The Integrated MARKAL-EFOM1 System) model is 
an Energy–Economy–Engineering–Environment (4E) model. 

•  4E models are widely used for transition scenarios for 
multidisciplinary subjects. 

•  Identifies most cost-effective pattern of resource use and 
technology deployment over time under various technological, 
behavioral, resource, and policy constraints. 
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•  Excess generation decreases significantly in each timeslice with DR. 
•  Electricity generation peak decreases in each timeslice with DR. 
•  There is less need to have dispatchable generation with DR. 

Mo8va8on	

•  The underlying assumption of a technology-forcing policy, 
where a regulator specifies a standard that cannot be met with 
the existing technology without switching to more expensive 
options, is that technology costs will eventually come down 
with more investments in R&D and/or deployment of 
technologies due to so-called “endogenous technological 
learning”  

•   Many of the climate policies adopted in California are 
considered technology-forcing policies. Examples such as the 
Zero Emission Vehicle (ZEV) program, the Low Carbon Fuel 
Standard (LCFS), and the energy storage were intended to 
elicit advancements in technology and/or technology costs 
reductions by forcing firms to commit resources to R&D or 
technology deployment 

•  In the electricity grid with a high penetration of renewable 
energy, demand management could also maximize the 
capacity factor of the electricity network and save a lot of 
investments in infrastructure  

•  Marginal abatement cost (MAC) curves have become a very 
popular tool in the policy world to answer this question, since 
they can represent the complex issue of cost-effective 
emissions reduction in a simple manner 

Research	Ques8ons	

 
 

•  In the future work, we increase the spatial and temporal resolution 
of the CA-TIMES model electricity sector in order to include a 
representation of the Western US electricity grid into the long-term 
energy system model of California  

•  The spatial modeling addition (inclusion of the entire WECC) will 
enable the CA-TIMES model to accurately represent electricity 
imports/exports, reduction in the variability of renewable energy 
due to geographic aggregation, and track spatial locations of power 
plants and related emissions 

•  we can model benefits of the electric grid with high penetration of 
renewables to optimally charge electric vehicles. On the top of 
these transportation sector related results, we also study how the 
implementation of smart grid and flexible demand in the building 
sector can benefit the grid and utility companies.  

•  we investigate how cost reduction in fuel production (hydrogen and 
electricity) and storage technologies can facilitate the adoption of 
alternative fuel vehicles and pave the road for low-carbon energy 
future  

Learning	Results	

Mi8ga8on	Cost	Curves	
•  Mitigation abatement cost (MAC) curves have become a very 

popular tool in the policy world : they can represent the complex 
issue of cost-effective emissions reduction in a simple manner.  

•  MAC curve is a graph that shows the cost associated with the 
emission abatement against the baseline for varying amounts of 
emission reduction  

•  MAC curves can give valuable insights to policy makers for the 
introduction of a CO2 tax (price- based) and the introduction of a 
carbon cap system (quantity- based) 

•  Transportation sector is the most cost-effective sector for 
emissions reduction. 

•  Many of transport end-uses rely (in part) on the same fuels to 
decarbonize (i.e. biofuels).   

Historical experience has shown that the improvement of a 
technology is related to the knowledge accumulated through 
the construction or use of this technology, and can be 
described with so-called learning or experience curves. 

•  Ct: Capital cost at cumulative installed capacity Qt at time t 
•  C0, Q0: Initial costs C0 at initial capacity of C0 
•  b: Learning index 
•  PR: Progress ratio 
•  LR: Learning rate 
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Source: Messner, S., Endogenized Technological Learning in an Energy 
Systems  Model, Journal of Evolutionary Economics, Vol. 7, issue 3, pages 
291-313, 1997. 

 
Nykvist, Björn, and Måns Nilsson. "Rapidly falling costs of battery 
packs for electric vehicles." Nature Climate Change (2015). 

•  What is the role of technology forcing policies of California in 
promoting uptake and cost reduction of alternative fuel 
vehicles? 

•  What is the impact of technology-forcing policies in the 
transportation sector on the entire economy and other sectors?  

•  What are the possible global implications of different countries’ 
attempts to promote uptake of alternative fuel vehicles? 

•  What are the implications of various global learning and 
deployment scenarios for California? 

•  What is the role of electricity and hydrogen in scenarios in 
which the benefit for learning are share between different cars?  

•  How can we account for the seasonal and daily variability of 
supply and demand in order to develop expansion plans of the 
electricity system with a high penetration of renewables and 
taking into account the existence of energy storage systems 
and Evs? 

•  How can the shift to electric vehicles help reduce GHG 
emissions and what is the impact of EVs on the electricity 
system? 

•  What is the impact of flexible charging on the transportation 
sector and on the adoption of EVs (given the learning effect)? 

•  What is the contribution of different measures (sectors, end-
uses, technologies) in reducing GHG emissions up to 2050? 

•  What influences abatement cost curves and to what extent? 
(e.g. technology availability, cost assumptions) 
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•  With learning adoption of hybrid vehicles as well as fuel cell 
vehicles increase significantly. 

•   In 2050 alternative fuel vehicles become competitive with the 
conventional vehicles 
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Demand	Response	Implementa8on	

•  Electricity sector in CA-TIMES has 48 timeslices (6 
representative months and 8 representative hours in each 
day) 

•  Load profile of commercial and residential service demands 
are defined 

•  We can implement Load shifting and Peak shaving in CA-
TIMES. 
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•  Sample results for 
residential space cooling: 
3 hour load shifts 
Maximum constraint: 30% of 
service demand can be shifted 
to adjacent timeslice 
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