

Air Quality and Health Implications from Low Carbon CA-TIMES Energy Scenarios Christina Zapata, Chris Yang, Sonia Yeh, Nathan Parker, James Nelson, Bart Ostro, Joan Ogden, Mike Kleeman Civil and Environmental Engineering, University of California, Davis - December 2015

An Institute of Transportation Studies Program

IV. Air Quality Results (Continued)

- Organic (primary and secondary) carbon contributes to a large share of the PM2.5 mass
- Nitrate, ammonium, elemental carbon, primary organic carbon, secondary organic carbon exhibit the largest reductions of the population-weighted concentration, of 40%, 35%, 23%, 15%, 3.2% in that order.

Annual average population-weighted BAU concentration and percent change between BAU and GHGAi scenario

Annual average population-weighted bao concentration and percent change between bao and Ghoar scenario												
			BAU Concentration					Percent Change				
				Air E	Basin		State		Air E	Basin		State
Pollutant	Units	Annual Avg.	SJV	SD	SF	SC	CA	SJV	SD	SF	SC	CA
Ozone (O ₃)	ppb	8-hr max.	51.9	50.9	44.9	50.3	49.5	-3.4%	2.8%	9.6%	5.4%	3.9%
		1-hr max.	55.9	56.8	50.1	55.3	54.1	-4.3%	0.5%	6.5%	5.0%	2.7%
Nitrogen Oxide (NO)	ppb	24-hr avg.	0.97	3.30	9.46	2.26	3.63	-50%	-84%	-82%	-55%	-69.8%
Nitrogen Dioxide (NO2)	ppb	24-hr avg.	7.15	14.3	20.8	11.1	12.6	-34%	-57%	-45%	-33%	-39.4%
Nitrogen Oxides (NOx)	ppb	24-hr avg.	8.12	17.6	30.2	13.3	16.2	-36%	-62%	-57%	-36%	-46.2%
PM0.1 mass (PM0.1)	µg m⁻³	24-hr avg.	2.38	3.39	3.82	3.25	3.17	-37%	-49%	-35%	-33%	-35.7%
PM2.5 mass (PM2.5)	µg m⁻³	24-hr avg.	6.84	9.21	10.21	8.21	8.27	-20%	-29%	-19%	-17%	-19.3%
PM2.5 elemental carbon (EC)	µg m⁻³	24-hr avg.	0.41	0.71	0.90	0.60	0.61	-27%	-34%	-38%	-8.8%	-22.5%
PM2.5 primary organic aerosol (POA)	µg m⁻³	24-hr avg.	1.45	1.54	2.14	1.82	1.72	-19%	-20%	-11%	-14%	-14.8%
PM2.5 secondary organic aerosol (SOA)	µg m⁻³	24-hr avg.	1.05	1.23	0.86	1.23	1.13	-7.9%	-0.6%	-3.3%	-1.5%	-3.2%
PM2.5 nitrate (NO ₃ -)	µg m⁻³	24-hr avg.	0.93	1.81	1.50	1.47	1.39	-49%	-49%	-45%	-34%	-40.2%
PM2.5 sulfate (SO ₄ ²⁻)	µg m⁻³	24-hr avg.	0.49	0.55	0.68	0.47	0.50	-12%	-61%	-28%	-25%	-28.1%
PM2.5 ammonium (NH ₄ +)	µg m⁻³	24-hr avg.	0.50	0.76	0.74	0.63	0.63	-33%	-50%	-36%	-30%	-35.0%
PM2.5 other	µg m⁻³	24-hr avg.	0.95	0.97	1.01	0.64	0.79	-3.0%	-20%	-5.2%	-4.7%	-5.9%
PM2.5 unknown	µg m⁻³	24-hr avg.	0.53	0.68	1.58	0.61	0.78	-0.2%	2.6%	2.2%	1.4%	1.7%

V. Mortality Implications

Long-term PM2.	•	ality estimates ih	ov cause of deat	h		Mortality Results			
				Difference of		• 2.1-3.6 thousand			
Death Cause	Risk Ratio	BAU	GHGAi	GHGAi-BAU	Percent Change				
	Reference	(thousands)	(thousands)	(thousands)	(%)	are avoided from			
PM2.5				(mousanus)		GHGAi to BAU			
		11 70	0.22	-30.18	energy differencesThis is a drop in all-				
All-Cause	Hoek et al. 2013	11.79	8.23						
		(7.88, 15.78)	(5.49, 11.02)	(-2.39, -4.76)	(-30.35, -30.15)	cause mortality from long-term			
	Krewski et al.	6.92	4.83	-2.09	-30.22	associated air			
	2009 Krowski ot al	(3.24, 10.31)	(2.22, 7.19)	(-1.02, -3.12)	(-31.41, -30.23)	pollution of about			
Lung Cancer	Krewski et al. 2009	0.81	0.55	-0.26	-32.59	30%			
	Cui et al. 2015	(0.53, 1.00) 0.99	(0.31 <i>,</i> 0.67) 0.67	(-0.21, -0.33) -0.32	(-40.34 <i>,</i> -32.87) -32.76	 This equates to 			
		(0.29, 1.65)	(0.14, 1.15)	(-0.15, -0.50)	(-51.22, -30.25)	nearly			
Cardio-	Krewski et al.	7.81	5.49	-2.32	-29.73	 PM2.5 all-cause 			
	pulmonary ²⁰⁰⁹		(4.07, 6.98)	(-1.74, -2.96)	(-30.02, -29.79)	mortality			
Cardio-	Hoek et al.	(5.81, 9.94) 6.65	4.67	-1.98	-29.79	reductions far			
	vascular ²⁰¹³		(2.40, 6.85)	(-1.08, -2.87)	(-31.09, -29.51)	exceed increase in			
Ozone		(3.48, 9.72)	(, 0.00)	(,,,	(= = = = = = = = = = = = = = = = = = =	ozone respiratory			
	10 maatt at al	0.25	0.47	0.22	00.04	death increase			
Respiratory	Jerrett et al. 2009	0.25	0.47	0.22	89.84	between scenarios			
		(0.02, 0.46)	(0.09, 0.86)	(0.06, 0.40)	(258.33, 87.53)	Of all causes of			
Piviz.5 and Ozon	PM2.5 and Ozone Total					death from			
All-Cause	Hoek et al.	11.79	8.23	-3.34	-28.33	pollution, lung			
	2013	(7.88, 15.78)	(5.49, 11.02)	(-2.33, -4.36)	(-29.57, -27.63)	cancer exhibits the			
	Krewski et al.	6.92	4.83	-1.87	-27.02	largest decline			
	2009	(3.24, 10.31)	(2.22, 7.19)	(-0.96, -2.72)	(-29.63, -26.38)	from PM2.5			
Long-term PM2.	5 and O3 mort	ality estimates, k	by cause of deat	h		exposure.			
		DALL		Difference of	 Based on value of a 				
Death Cause	Risk Ratio		GHGAi	statistica	statistical life methods, this				
	Reference	(Billion USD)	(Billion USD)	equates ⁻	to a 13-25 billion				
All-Cause H	loek et al.	87.22	ngs from deaths						
	2013 (Krewski et al.		(40.60, 81.55)	avoided,	ed, versus 51-87 billion				
			51.19 35.72 -13.83 (22.08.76.20) (16.45.52.22) (.7.07.20.10)						
2	.009	(23.98, 76.29)	(16.45, 53.23)	(-7.07, -20.10)					
VI. Conclusions	5				VII. Acknowled	dgements			
Energy Scenario		off road marias	and aviation da	amad by CA	Collaborators				
•		off-road marine, or costly to deca		•	 CA-TIMES Energy Scenarios Chris Yang, ITS UC Davis Sonia Yeh, ITS UC Davis Biofuel Spatial Optimization Nathan Parker, Arizona State II 				
		ner criteria pollu [.]							
	nodes decarbc	•		nan the sectors					
Emissions									
	uctions occur fo	 Nathan Parker, Arizona State U. Electricity Concretion Load Area Mix 							
		wable mix of elec	•		 Electricity Generation Load Area Mix James Nelson, UC Berkeley Mortality Estimation 				
		road and marine							
Pollution Concen		 Mortality Estimation Bart Ostro, CalEPA Advisors 							
	es substantially								
	•	nd size distributi		d gaseous					
	ange dramatica	 Mike Kleeman, CEE UC Davis Joan Ogden, ITS UC Davis 							
•	-	ions in the GHG			Funding				
	-			ozone increase.					
Mortality and Co						•			
,		ousand prematu	re deaths are av	voided from	 STEPS Corporate Affiliate Scholarship University of California Transportation 				
	J energy differe	•			 University of California Transportation Center (LICTC) Dissertation Grant 				
	B-25 billion US (Center (UCTC) Dissertation Grant Award							
-									

Long-term PM2.	Mortality Results									
		5.411		Difference of		• 2.1-3.6 thousand				
Death Cause	Risk Ratio	BAU	GHGAi	GHGAi-BAU	Percent Change	premature deaths				
	Reference	(thousands)	(thousands)	(thousands)	(%)	are avoided from				
PM2.5				(unouseditor)		GHGAi to BAU				
						energy differences				
All-Cause	Hoek et al.	11.79	8.23	-3.56	-30.18	• This is a drop in all-				
	2013	(7.88, 15.78)	(5.49, 11.02)	(-2.39, -4.76)	(-30.35, -30.15)	cause mortality				
	Krewski et al.	6.92	4.83	-2.09	-30.22	from long-term				
	2009	(3.24, 10.31)	(2.22, 7.19)	(-1.02, -3.12)	(-31.41, -30.23)	associated air				
Lung Cancer		0.81	0.55	-0.26	-32.59	pollution of about				
	2009	(0.53, 1.00)	(0.31, 0.67)	(-0.21, -0.33)	(-40.34, -32.87)	30%				
	Cui et al. 2015	0.99	0.67	-0.32	-32.76	• This equates to				
		(0.29, 1.65)	(0.14, 1.15)	(-0.15, -0.50)	(-51.22, -30.25)	nearly				
Cardio-	Krewski et al.	7.81	5.49	-2.32	-29.73	PM2.5 all-cause				
pulmonary	2009	(5.81, 9.94)	(4.07, 6.98)	(-1.74, -2.96)	(-30.02, -29.79)	mortality				
Cardio-	Hoek et al.	6.65	4.67	-1.98	-29.79	reductions far				
vascular	2013	(3.48, 9.72)	(2.40, 6.85)	(-1.08, -2.87)	(-31.09, -29.51)	exceed increase in				
Ozone	zone									
Respiratory	Jerrett et al.	0.25	0.47	0.22	89.84	death increase				
incopilatory	2009	(0.02, 0.46)	(0.09, 0.86)	(0.06, 0.40)	(258.33, 87.53)	between scenarios				
PM2.5 and Ozor		(0.02, 0.40)	(0.00)		,, 07.007	Of all causes of				
						death from				
All-Cause	Hoek et al.	11.79	8.23	-3.34	-28.33	pollution, lung				
	2013	(7.88, 15.78)	(5.49, 11.02)	(-2.33, -4.36)	(-29.57, -27.63)	cancer exhibits the				
	Krewski et al.	6.92	4.83	-1.87	-27.02	largest decline				
	2009	(3.24, 10.31)	(2.22, 7.19)	(-0.96, -2.72)	(-29.63, -26.38)	from PM2.5				
Long-term PM2.	.5 and O3 mort	ality estimates, b	y cause of deat	h		exposure.				
	Risk Ratio	BAU	GHGAi	Difference of	 Based on value of a 					
Death Cause				GHGAi-BAU	statistica	l life methods, this				
	Reference	(Billion USD)	(Billion USD)	(Billion USD)	equates to a 13-25 billion					
All-Cause	loek et al.	87.22	60.89	ngs from deaths						
2	2013	(58.30, 116.75)	versus 51-87 billion							
k	Krewski et al.		35.72	-13.83	in costs.					
2009		(23.98, 76.29)	(16.45, 53.23)							
VI. Conclusion	S				VII. Acknowled	dgements				
Energy Scenario	Differences				Collaborators					
•,		off-road marine, a	and aviation dee	emed by CA-						
•		or costly to decar		•	 CA-TIMES Energy Scenarios Chris Yang, ITS UC Davis Sonia Yeh, ITS UC Davis Biofuel Spatial Optimization 					
		ner criteria pollut								
	modes decarbo	•								
Emissions						•				
	uctions occur f	or the vehicular e	yhaust evanora	ative brake and		Parker, Arizona State U.				
		wable mix of elec	•		Electricity Generation Load Area Mix					
		 James Nelson, UC Berkeley Mortality Estimation 								
		road and marine	and aviation			timation				
Pollution Concer	creases in off-i	road and marine	and aviation		Mortality Est Part Oct					
 Pollution Concer PM2 5 reduce 	ncreases in off-i ntrations				Bart Ost	timation tro, CalEPA				
• PM2.5 reduce	ncreases in off-in Intrations es substantially	vacross the state		digaseous	Bart Ost Advisors	tro, CalEPA				
PM2.5 reductThe chemical	ncreases in off-in Intrations es substantially I composition a	across the state nd size distributi	on of PM2.5 and	•	Bart OstAdvisorsMike Kleema	tro, CalEPA an, CEE UC Davis				
 PM2.5 reduct The chemical pollutants ch 	ncreases in off-in intrations es substantially l composition a ange dramatica	v across the state and size distributi ally due to the rea	on of PM2.5 and duction of comb	oustion.	 Bart Ost Advisors Mike Kleema Joan Ogden, 	tro, CalEPA				
 PM2.5 reduct The chemical pollutants ch Due to the la 	ncreases in off-in Intrations es substantially composition a ange dramatica rge NOx reduct	v across the state and size distributi ally due to the re- tions in the GHGA	on of PM2.5 and duction of comb Ai scenario, som	oustion. e NOx-	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding 	tro, CalEPA an, CEE UC Davis , ITS UC Davis				
 PM2.5 reduct The chemical pollutants ch Due to the la saturated are 	ncreases in off-in ntrations es substantially l composition a ange dramatica rge NOx reduct eas such as SF a	v across the state and size distributi ally due to the rea	on of PM2.5 and duction of comb Ai scenario, som	oustion. e NOx-	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding STEPS Fellov 	tro, CalEPA an, CEE UC Davis , ITS UC Davis vship				
 PM2.5 reduct The chemical pollutants ch Due to the la saturated are Mortality and Co 	ncreases in off-in ntrations es substantially l composition a ange dramatica rge NOx reduct eas such as SF a osts Avoided	v across the state and size distributi ally due to the re- tions in the GHGA and LA would exp	on of PM2.5 and duction of comb Ai scenario, som erience a slight	oustion. e NOx- ozone increase.	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding STEPS Fellov STEPS Corpo 	tro, CalEPA an, CEE UC Davis , ITS UC Davis vship orate Affiliate Scholarship				
 PM2.5 reduct The chemical pollutants ch Due to the la saturated are Mortality and Co 30% reduction 	ncreases in off-intrations es substantially l composition a ange dramatica rge NOx reduct eas such as SF a osts Avoided on or 2.1-3.6 th	v across the state and size distributi ally due to the re- tions in the GHGA and LA would exp ousand prematur	on of PM2.5 and duction of comb Ai scenario, som erience a slight	oustion. e NOx- ozone increase.	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding STEPS Fellov STEPS Corpo University of 	tro, CalEPA an, CEE UC Davis , ITS UC Davis vship prate Affiliate Scholarship f California Transportation				
 PM2.5 reduct The chemical pollutants ch Due to the la saturated are Mortality and Co 30% reduction GHGAi to BAU 	ncreases in off- ntrations es substantially l composition a ange dramatica rge NOx reduct eas such as SF a osts Avoided on or 2.1-3.6 th J energy differe	v across the state and size distributi ally due to the re- tions in the GHGA and LA would exp ousand prematur ences	on of PM2.5 and duction of comb Ai scenario, som erience a slight	oustion. e NOx- ozone increase.	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding STEPS Fellov STEPS Corpo University of Center (UCT 	tro, CalEPA an, CEE UC Davis , ITS UC Davis vship orate Affiliate Scholarship				
 PM2.5 reduct The chemical pollutants ch Due to the la saturated are Mortality and Co 30% reduction GHGAi to BAU 	ncreases in off- ntrations es substantially l composition a ange dramatica rge NOx reduct eas such as SF a osts Avoided on or 2.1-3.6 th J energy differe	v across the state and size distributi ally due to the re- tions in the GHGA and LA would exp ousand prematur	on of PM2.5 and duction of comb Ai scenario, som erience a slight	oustion. e NOx- ozone increase.	 Bart Ost Advisors Mike Kleema Joan Ogden, Funding STEPS Fellov STEPS Corpo University of 	tro, CalEPA an, CEE UC Davis , ITS UC Davis vship prate Affiliate Scholarship f California Transportation				

• The particle mass concentration in the ultrafine (PM0.1) particle size range have a larger decline of 35% than the total ultrafine and fine particle (PM2.5) sizes which reduce by 19%.

 Primary organic carbon reduces substantially, but secondary organic carbon formation changes are much smaller.

Contacting the Authors:

Christina Zapata (*cbzapata@ucdavis.edu*), Mike Kleeman (*mjkleeman@ucdavis.edu*)