UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

Session 4:

Transition Scenarios and Related Modeling

STEPS Transportation Transition Scenarios for California: Update on Fuels and Infrastructure Module

Christopher Yang

Joan Ogden, Marshall Miller, Guozhen Li, Lew Fulton, Dan Scheitrum, Julie Witcover, Nathan Parker, Rosa Dominguez-Faus

STEPS Symposium

Nov 30, 2016

www.steps.ucdavis.edu

STEPS Decarbonization Scenarios for Transportation

- Critical Transition Dynamics 2015-2030
- Develop scenarios for transportation to analyze future vehicle mixes, fuel usage, emissions and costs
 - Integrate ongoing STEPS research on vehicles and fuels
 - Focus on the cost and emissions impacts of a transition to decarbonized transportation system (advanced vehicles and alternative fuels)
 - Analyze 2010-2050 with particular focus on 2015-2030
 - Explore detailed vehicle/fuel scenarios across many transport sectors
- Project goals
 - Develop scenario modeling framework
 - Produce realistic scenarios estimating the contribution of transportation to emissions reductions and meeting climate change goals
 - Exploring technology/fuel/resource mix and emissions
 - Assess investments required (and potential subsidies required)
 - Scenarios enable "what-if" analyses and improve understanding of sensitivities of the system to inputs

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Decarbonization Scenarios for Transportation

- Analyze reference (BAU) and decarbonization (GHG) scenarios
- Look across transportation sectors
 - Light-duty, medium and heavy-duty/medium-duty trucks
 - Additional sectors (rail, aviation, marine) will be included next year
- Started with focus on **California** to build up modeling capabilities but plan to develop US scenarios *next year*
 - Similar approach (technology specifications, modeling framework)
 - Differences (additional data collection, infrastructure and resource availability and cost)

Unspecified Aviation
Intrastate Aviation
Other Aviation
Light-duty Cars
Light-duty Trucks & SUVs
Heavy-duty Trucks, Buses
Motorcycles
Water - borne Port
Water borne Transit
Water borne Harbor Craft
Off-road Industrial
Off-road Oil Drilling
International Aviation
Interstate Aviation
International Marine

Transition Scenario Modeling Framework

- Spreadsheet-based model
 - Specify vehicle technologies (sales mix, fuel economy, cost)
 - Specify fuel supply (mix of production/delivery pathways, carbon intensity, infrastructure capital cost)

Fuel Module

- Fuel are modeled from "bottom-up"
 - Number of vehicles of specified technology \rightarrow
 - Number and size of stations supplying a given fuel \rightarrow
 - Number and size of production plants producing fuel
- Inputs:
 - Plant and station cost as a function of scale and time
 - Process efficiencies and energy inputs
- Stock turnover
 - Key element of model
 - Infrastructure has lifetime so you can't change to new fuels too quickly or you incur higher costs
 - Current assumptions: 25 years for production, 15 years for stations

Fuel Modeling System Boundaries

New fuel types require (H2 and Biofuels) require modeling of resources, production facilities for multiple pathways, transport and new stations

Existing fuels/energy carriers only require modeling of fueling infrastructure and the cost of supplying finished fuels

Refueling Stations

- Different types of stations for different vehicles
 - LDV stations: LDVs and heavy-duty pickups use network of "gas station" analogues (except for EVs)
 - Heavy-duty truck stops: Class 8, long and short-haul trucks are assumed to use larger "truck stop" refueling stations
 - Central fleet refueling: buses, vocational and delivery trucks are assumed to use central fleet refueling
- These categories affect the number of stations required to serve a given number of vehicles
 - Smaller, more dispersed stations for LDVs and larger, fewer "stations" for HDVs and fleets.

Modeling Refueling Stations

- Key Assumptions:
 - Convenience is important in early market, so early stations are small and underutilized
 - As # of cars grow, the size of new stations also increases
- Create lookup table for number of cars vs. station capacity

Fuels and Pathways Modeled

	Fuels	Processes	Resources
Natural Gas	CNG LNG		Fossil Natural Gas ¹ Renewable Natural Gas ²
Electricity	Electricity		Grid mix Renewables only
Biofuels	Ethanol Biodiesel	Corn Ethanol Cellulosic Ethanol FAME Biodiesel Fischer-Tropsch Hydrotreatment	Corn Cellulosic biomass ² Waste oil ² Oil crops
Hydrogen	Liquid Gaseous	Onsite Steam Reforming Onsite Electrolysis Central Steam Reforming Biomass gasification Central electrolysis Gas truck delivery Liquid truck delivery Pipeline delivery	Fossil Natural Gas ¹ Renewable electricity Cellulosic biomass ²

^{1.} AEO 2016

² Resource supply defined by supply curve (UCD)

Stock turnover of infrastructure

- Slow turnover of fueling infrastructure is an important factor affecting the rate of decarbonization
- Cannot make transitions too quickly

TRANSPORTATION ENERGY PATHWAYS

Production plants

- Production facility costs are a function of capacity scale
 - Scaling factors derived from literature values or bottom up assessments
- Many assessments have "current" and "future" cost estimates so assumptions are made about when these costs might be valid
- Plant sizes are chosen looking at 5 year periods

• Simplified levelized cost calculation

 $\frac{\text{Levelized Fuel}}{\text{Cost}(\$/\text{GGE})} = \frac{\text{a}(\text{CapitalCost} \text{ CRF} + \text{Fix.O}\&M + \text{Var.O}\&M + \text{AnnualEnergyInputs} \text{ EnergyCost})}{\text{Total Fuel Production}}$

 Currently no representation of subsidies/incentives, fuel taxes or trading credits (LCFS)

Two Scenarios (BAU vs GHG)

SUST/

	Vehicles	Fuels
Business-As-Usual (BAU)	Low penetration of alternative fueled vehicles	Relatively high CI values
GHG (ZEV) Scenario	High penetration of alternative fueled vehicles	Relatively low CI values

BAU Scenario

Total emissions = Fuel Usage x **Fuel CI**

BAU average Cl doesn't change much, but overall fuel usage declines

GHG Scenario

Total emissions = Fuel Usage x **Fuel CI**

GHG: average CI declines by 40% in 2050,

Overall fuel usage declines by 48%

GHG emissions decline by ~68%

Fuel Costs

Averaged across LDV, and HDV and fleet stations

Alternative Fuel Infrastructure and Resource Costs

Summary and Conclusions

- Completed a preliminary version of the fuel infrastructure module
 - Separate representation of multiple pathways of alternative fuels (biofuels, natural gas, electricity and hydrogen)
 - Modeled fuel production and fueling infrastructure (resource supply, production, transport, refueling)
 - Demand for fuels affects size and number of plants and stations which affects fuel costs
 - Detailed models but still lots of assumptions (need to specify mix of resources, pathways, CI values and infrastructure and resource costs)
- Next steps
 - Continue to review literature and speak to experts/sponsors to update assumptions on fuel infrastructure
 - Explore other scenarios and uncertainty in cost assumptions

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Thanks! ccyang@ucdavis.edu

Infrastructure Costs and Parameters Sources

	Resources	Production
Natural Gas	Fossil NG: AEO 2016 RNG: UC Davis study	
Electricity		Grid mix
Biofuels	Biomass: Parker (UCD)	Antares (2009)
Hydrogen	Fossil NG: AEO 2016 Biomass: Parker (UCD)	Stations: H2A Central Production: H2A

Modeling and analyzing near term transitions to alternative fueled vehicles using a spatial regional consumer choice and fueling infrastructure model

Kalai Ramea, Christopher Yang, Michael Nicholas, Joan Ogden November 30, 2016 STEPS Symposium, Davis, CA

Project Background and Motivation

- Consumer preferences, especially in the transportation sector are captured through discrete choice models
 - Has heterogeneous consumer segments
 - Captures consumer perception towards various technologies based on consumer characteristics and vehicle attributes
 - But, they typically operate on a spatially aggregated level
 - Spatial details are especially important while considering the effect of infrastructure availability in the neighborhood
- Implements consumer vehicle purchase behavior into a detailed spatial model with geographic specification of charging and refueling stations
- This research project illustrates the vehicle purchase behavior of consumers in California at zip code level

MA³T model developed by Oak Ridge National Laboratory (Lin & Greene, 2010) is used to represent vehicle consumer choice (typically the choice representation is done in two stages):

First, demand is disaggregated into different consumer segments based on their characteristics (driving behavior, risk attitude, etc.).

Secondly, non-monetary costs ("disutility costs") that capture consumer perception of different vehicle technologies are added to the model

These costs go through a nested multinomial-logit module to determine purchase probability of each vehicle technology for each consumer group

Lin, Z., & Greene, D. (2010). The MA³T Model: Projecting PHEV Demands with Detailed Market Segmentation. 2010 TRB Annual Meeting CD-Room.

Major Disutility Cost Components in the MA³T Model

Disutility Cost Component	Description	Dependent Characteristics
Refueling inconvenience cost (for non- electric vehicles—eg. FCVs)	The combined time and inconvenience cost to refuel a vehicle	Annual miles driven, fuel economy, vehicle storage, station availability, value of time
Range Limitation Cost (BEVs)	The estimated generalized cost incurred by a BEV owner due to limited range of battery electric vehicles in conjunction with the owners VMT pattern	Daily VMT, annual miles driven, infrastructure availability, anxiety cost (consumer- specific, based on their risk attitude)
Model availability cost	Estimated cost of consumer perception based on make and model diversity available in the market	Cumulative vehicle sales
Risk Premium	The risk premium perceived by the consumer based on their ability to take risk	Cumulative vehicle sales

Effect of Household Income on Vehicle Price

- Perception of incremental vehicle price (difference from gasoline vehicles) significantly depends on the household income
- The income related disutility cost is estimated from the (incremental vehicle price / income) ratio
- For lower income households, the ratio (incremental vehicle price/income) is higher than higher income households, indicating, as household income increases, the "disutility" associated with larger incremental vehicle prices decreases.
- Current work focuses on calibrating this method based on historic vehicle sales data for different income groups.

Purchase Probability Estimation

Illustration of Cost Components

Low-income household

Late majority, high VMT, low income, poor infrastructure availability

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

1565 zip code regions * 5 income groups * 7 VMT categories * 3 Risk categories * Home charger Population share * Workplace charger population share = **657,300** consumer groups

¹Department of Energy, ² California Household Travel Survey; ³American Community Survey

Income Distribution in CA regions

SF Bay area has greater high income population share than the state average

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Early Adopter Population Distribution

Infrastructure Availability Calculation for each Zip Code

- We currently use a simplified approach for calculating refueling availability
 - For each zip code, a 5-mile buffer radius is constructed around the region
 - The number of hydrogen stations / public charging stations inside the region is calculated.
 - This is divided by the number of gasoline stations in the neighborhood for hydrogen stations or divided by the number of public attractor locations in the neighborhood for charging stations
 - The resulting percentage is the "station availability" value for that region.
- This parameter will be further refined to include all the stations in the nearby region, and the availability parameter will be estimated based on both proximity and density.

Infrastructure Availability Distribution

 This cost trajectory reflects the consumers who have no access to home or work chargers, and rely only on public chargers.

- Station availability is typically the percentage of hydrogen stations to gasoline stations in the region.
- Low annual VMT: 8656 miles; Medium annual VMT: 16,068 miles, and high annual VMT: 28,288 miles

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Source: MA³T Model (Lin & Greene, 2010)

PRELIMINARY RESULTS

Aggregated Purchase Probability in 2020

 Bay area has 78% higher BEV purchase probability than the state average due to presence of high income population and better access to workplace charging

- The number of households with vehicles is higher in Southern California than other regions in CA.
- Therefore, SoCal leads in actual vehicle purchase numbers in all categories.
- Total vehicle sales in SF bay area is 17.6% of the total sales in CA, but their BEV sales is about 31% in the state, and FCV sales is 27% of total.

Top 20 cities with highest BEV Purchase per person

FCVs per person

- BEV adoption is more prevalent compared to FCV.
- SF Bay area leads in BEV adoption, Southern California leads in FCV adoption

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

FCV Purchases per person

Presence of hydrogen station in the neighborhood is very important for FCV adoption.

On the other hand, workplace charging plays a significant role in BEV adoption compared to the presence of public chargers.

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

- This research estimates spatial distribution of alternativefueled vehicle purchases with a consumer choice model
 - Segmenting consumers using spatially sensitive attributes such as income, driving behavior and utility factors related to infrastructure proximity.
- Initial results:
 - Can match patterns of adoption in higher income, early adopter areas such as SF Bay Area
 - The AFV adoption numbers are higher than expected—better calibration to data needed
- Main challenge: insufficient data at the detailed spatial level

Future Work

- Continue calibrating the model, collect more data
- Constructing a feedback loop between the years to analyze vehicle transitions for the next 5-10 years
- Split the spatial resolution into 1-sq.mile grids to refine infrastructure analysis
- Analyzing different infrastructure investment patterns (eg. What are the optimal locations for the next 100 hydrogen stations? Which pattern would lead to maximum adoption of FCVs?)
- Cost and emissions estimation of the model scenarios

ADDITIONAL SLIDES

Vehicle Prices

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Attribute	Description	Source
Consumer driving profile	Expressed in annual miles traveled (divided into seven categories—5000 to 35,000 miles)	California Household Travel Survey (VMT profile at zip code level)
Risk Attitude	Division of consumers based on their perception of risk towards new technologies: Early adopters , Early Majority and late majority .	Early adopter population is determined from employment type (tech sector) from ACS data.
Income	Average household income. Willingness to pay for a vehicle technology increases with increase in income (divided into 5 categories)	California Household Travel Survey (Annual household income)
Home Charger Access	Estimates consumers with dedicated garage access. This determines how much they rely on public chargers	American Community Survey 2015 (single detached household percentage at zip code level)
Workplace charger access	Estimates consumers with access to workplace chargers	Assumptions are made for each region (20% for SF bay area, 5% for SoCal, and 0.1% for the rest of CA)

Daily VMT Distribution for each VMT Category

Daily eVMT availability (mile)

Map of Existing Hydrogen Station Locations

Map of Planned Hydrogen Station Locations in 2016

National Level—Hydrogen Stations (Existing)

Discussion

