Modeling and analyzing near term transitions to alternative fueled vehicles using a spatial regional consumer choice and fueling infrastructure model

Kalai Ramea, Christopher Yang, Michael Nicholas, Joan Ogden

November 30, 2016

STEPS Symposium, Davis, CA

Project Background and Motivation

- Consumer preferences, especially in the transportation sector are captured through discrete choice models
 - Has heterogeneous consumer segments
 - Captures consumer perception towards various technologies based on consumer characteristics and vehicle attributes
 - But, they typically operate on a spatially aggregated level
 - Spatial details are especially important while considering the effect of infrastructure availability in the neighborhood
- Implements consumer vehicle purchase behavior into a detailed spatial model with geographic specification of charging and refueling stations
- This research project illustrates the vehicle purchase behavior of consumers in California at zip code level

Consumer Choice Representation

MA³T model developed by Oak Ridge National Laboratory (Lin & Greene, 2010) is used to represent vehicle consumer choice (typically the choice representation is done in two stages):

First, demand is disaggregated into different consumer segments based on their characteristics (driving behavior, risk attitude, etc.).

Secondly, non-monetary costs ("disutility costs") that capture consumer perception of different vehicle technologies are added to the model

These costs go through a nested multinomial-logit module to determine purchase probability of each vehicle technology for each consumer group

Lin, Z., & Greene, D. (2010). The MA³T Model: Projecting PHEV Demands with Detailed Market Segmentation. 2010 TRB Annual Meeting CD-Room.

Major Disutility Cost Components in the MA³T Model

Disutility Cost Component	Description	Dependent Characteristics
Refueling inconvenience cost (for non-electric vehicles—eg. FCVs)	The combined time and inconvenience cost to refuel a vehicle	Annual miles driven, fuel economy, vehicle storage, station availability, value of time
Range Limitation Cost (BEVs)	The estimated generalized cost incurred by a BEV owner due to limited range of battery electric vehicles in conjunction with the owners VMT pattern	Daily VMT, annual miles driven, infrastructure availability, anxiety cost (consumer-specific, based on their risk attitude)
Model availability cost	Estimated cost of consumer perception based on make and model diversity available in the market	Cumulative vehicle sales
Risk Premium	The risk premium perceived by the consumer based on their ability to take risk	Cumulative vehicle sales

Effect of Household Income on Vehicle Price

- Perception of incremental vehicle price (difference from gasoline vehicles) significantly depends on the household income
- The income related disutility cost is estimated from the (incremental vehicle price / income) ratio
- For lower income households, the ratio (incremental vehicle price/income) is higher than higher income households, indicating, as household income increases, the "disutility" associated with larger incremental vehicle prices decreases.
- Current work focuses on calibrating this method based on historic vehicle sales data for different income groups.

Purchase Probability Estimation

Illustration of Cost Components

Poor infrastructure availability

Low-income household

Late majority, high VMT, low income, poor infrastructure availability

1565 zip code regions * 5 income groups * 7 VMT categories * 3 Risk categories * Home charger Population share * Workplace charger population share = **657,300** consumer groups

¹Department of Energy, ² California Household Travel Survey; ³American Community Survey

SF Bay area has greater high income population share than the state average

Income Distribution in CA regions

Infrastructure Availability Calculation for each Zip Code

- We currently use a simplified approach for calculating refueling availability
 - For each zip code, a 5-mile buffer radius is constructed around the region
 - The number of hydrogen stations / public charging stations inside the region is calculated.
 - This is divided by the number of gasoline stations in the neighborhood for hydrogen stations or divided by the number of public attractor locations in the neighborhood for charging stations
 - The resulting percentage is the "station availability" value for that region.
- This parameter will be further refined to include all the stations in the nearby region, and the availability parameter will be estimated based on both proximity and density.

Infrastructure Availability Distribution

Range limitation cost of BEV 100-mile range: Late majority group

Refueling Inconvenience Cost for Fuel Cell Vehicles

Low annual VMT

High annual VMT

4.0%

3.5%

4.5%

5.0%

Medium annual VMT

 Hydrogen Station Availability
Station availability is typically the percentage of hydrogen stations to gasoline stations in the region.

2.5%

3.0%

2.0%

consumers who have no access to home or work chargers, and rely only on public chargers.

This cost trajectory reflects the

 Low annual VMT: 8656 miles; Medium annual VMT: 16,068 miles, and high annual VMT: 28,288 miles

40000

30000

20000

10000

Ω

0.1%

0.5%

1.0%

1.5%

Source: MA³T Model (Lin & Greene, 2010)

PRELIMINARY RESULTS

Aggregated Purchase Probability in 2020

 Bay area has 78% higher BEV purchase probability than the state average due to presence of high income population and better access to workplace charging

- The number of households with vehicles is higher in Southern California than other regions in CA.
- Therefore, SoCal leads in actual vehicle purchase numbers in all categories.
- Total vehicle sales in SF bay area is 17.6% of the total sales in CA, but their BEV sales is about 31% in the state, and FCV sales is 27% of total.

Top 20 cities with highest BEV Purchase per person

FCVs per person

Heat Map of Adoption Patterns

- BEV adoption is more prevalent compared to FCV.
- SF Bay area leads in BEV adoption, Southern California leads in FCV adoption

FCV Purchases per person

Presence of hydrogen station in the neighborhood is very important for FCV adoption.

On the other hand, workplace charging plays a significant role in BEV adoption compared to the presence of public chargers.

Summary

- This research estimates spatial distribution of alternative-fueled vehicle purchases with a consumer choice model
 - Segmenting consumers using spatially sensitive attributes such as income, driving behavior and utility factors related to infrastructure proximity.
- Initial results:
 - Can match patterns of adoption in higher income, early adopter areas such as SF Bay Area
 - The AFV adoption numbers are higher than expected—better calibration to data needed
- Main challenge: insufficient data at the detailed spatial level

Future Work

- Continue calibrating the model, collect more data
- Constructing a feedback loop between the years to analyze vehicle transitions for the next 5-10 years
- Split the spatial resolution into 1-sq.mile grids to refine infrastructure analysis
- Analyzing different infrastructure investment patterns (eg. What are the optimal locations for the next 100 hydrogen stations? Which pattern would lead to maximum adoption of FCVs?)
- Cost and emissions estimation of the model scenarios

ADDITIONAL SLIDES

Vehicle Prices

Vehicle Prices in the year 2020

Input Module—Consumer Characteristics (data)

Attribute	Description	Source
Consumer driving profile	Expressed in annual miles traveled (divided into seven categories—5000 to 35,000 miles)	California Household Travel Survey (VMT profile at zip code level)
Risk Attitude	Division of consumers based on their perception of risk towards new technologies: Early adopters , Early Majority and late majority .	Early adopter population is determined from employment type (tech sector) from ACS data.
Income	Average household income. Willingness to pay for a vehicle technology increases with increase in income (divided into 5 categories)	California Household Travel Survey (Annual household income)
Home Charger Access	Estimates consumers with dedicated garage access. This determines how much they rely on public chargers	American Community Survey 2015 (single detached household percentage at zip code level)
Workplace charger access	Estimates consumers with access to workplace chargers	Assumptions are made for each region (20% for SF bay area, 5% for SoCal, and 0.1% for the rest of CA)

Daily VMT Distribution for each VMT Distribution for each annual mile category

Daily eVMT availability (mile)

Map of Existing Hydrogen Station Locations

Map of Planned Hydrogen Station Locations in 2016

National Level—Hydrogen Stations (Fxisting)

