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Project Background and Motivation

 Consumer preferences, especially in the transportation sector
are captured through discrete choice models

— Has heterogeneous consumer segments

— Captures consumer perception towards various technologies based on
consumer characteristics and vehicle attributes

— But, they typically operate on a spatially aggregated level

— Spatial details are especially important while considering the effect of
infrastructure availability in the neighborhood

* Implements consumer vehicle purchase behavior into a
detailed spatial model with geographic specification of charging
and refueling stations

* This research project illustrates the vehicle purchase behavior
of consumers in California at zip code level



Consumer Choice Representation

MA3T model developed by Oak Ridge National Laboratory (Lin & Greene, 2010)
is used to represent vehicle consumer choice (typically the choice
representation is done in two stages):

First, demand is disaggregated into different consumer segments based on
their characteristics (driving behavior, risk attitude, etc.).

[ Demand > i

Secondly, non-monetary costs (“disutility costs”) that capture consumer
perception of different vehicle technologies are added to the model

These costs go through a nested multinomial-logit module to determine purchase
probability of each vehicle technology for each consumer group

Lin, Z., & Greene, D. (2010). The MA3T Model:
Projecting PHEV Demands with Detailed Market
Segmentation. 2010 TRB Annual Meeting CD-Room.



Major Disutility Cost Components in the MA3T Model

Disutility Cost Description Dependent Characteristics
Component

Refueling The combined time and Annual miles driven, fuel economy,
inconvenience cost inconvenience cost to refuel a vehicle storage, station availability,
(for non-electric vehicle value of time

vehicles—eg. FCVs)

Range Limitation The estimated generalized Daily VMT, annual miles driven,

Cost (BEVs) cost incurred by a BEV owner infrastructure availability, anxiety
due to limited range of cost (consumer-specific, based on
battery electric vehicles in their risk attitude)

conjunction with the owners
VMT pattern

Model availability Estimated cost of consumer Cumulative vehicle sales
cost perception based on make

and model diversity available

in the market

Risk Premium The risk premium perceived Cumulative vehicle sales
by the consumer based on
their ability to take risk



Effect of Household Income on Vehicle
Price

Perception of incremental vehicle price (difference from
gasoline vehicles) significantly depends on the household
income

The income related disutility cost is estimated from the
(incremental vehicle price / income) ratio

For lower income households, the ratio (incremental vehicle
price/income) is higher than higher income households,
indicating, as household income increases, the “disutility”
associated with larger incremental vehicle prices decreases.

Current work focuses on calibrating this method based on
historic vehicle sales data for different income groups.
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Purchase Probablllty Estimation
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Early adopter, low VMT, high income, good infrastructure availability Purchase Probability
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1565 zip code regions * 5 income groups * 7 VMT categories * 3 Risk
categories * Home charger Population share * Workplace charger population
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Early Adopter Population Distribution

These are 51 zip code regions (SF bay

500 area & some parts of Southern
California), constituting almost 60% of
the early adopter population
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Infrastructure Availability Calculation for
each Zip Code

 We currently use a simplified approach for calculating refueling

availability
— For each zip code, a 5-mile buffer radius is constructed around the region

— The number of hydrogen stations / public charging stations inside the region is
calculated.

— This is divided by the number of gasoline stations in the neighborhood for
hydrogen stations or divided by the number of public attractor locations in the
neighborhood for charging stations

— The resulting percentage is the “station availability” value for that region.

* This parameter will be further refined to include all the stations
in the nearby region, and the availability parameter will be
estimated based on both proximity and density.
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Range limitation cost of BEV 100-mile range: Late majority group Refueling Inconvenience Cost for Fuel Cell Vehicles
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This cost trajectory reflects the  Station availability is typically the
consumers who have no access to percentage of hydrogen stations to
home or work chargers, and rely gasoline stations in the region.

only on public chargers.

Low annual VMT: 8656 miles; Medium annual VMT: 16,068 miles, and high annual
VMT: 28,288 miles

Source: MA3T Model (Lin & Greene, 2010)



PRELIMINARY RESULTS



Aggregated Purchase Probability in 2020
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high income population and better access to workplace charging



Millions of Vehicles
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The number of households with vehicles
is higher in Southern California than other
regions in CA.

Therefore, SoCal leads in actual vehicle
purchase numbers in all categories.

Total vehicle sales in SF bay area is 17.6%
of the total sales in CA, but their BEV sales
is about 31% in the state, and FCV sales is
27% of total.



Top 20 cities with highest BEV Purchase per person

Sunnyvale

Mountain View

Palo Alto

Vista

Fremont

San Bernardino

Walnut Creek

Victorville

San Mateo

Santa Clara

Perris

San Jose

Hayward

Redwood Clty
Pittsbur
Burban

Santa Monica

Glendale

Antioch

Berkeley

12 out of 20 cities belong

to SF Bay Area
(NN

0.02 0.04 0.06 0.08

BEVs per person

O
O_
o



Top 20 cities with highest FCV Purchase per person
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Heat Map of Adoption Patterns
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BEV adoption is more prevalent compared to FCV.
SF Bay area leads in BEV adoption, Southern California leads in FCV adoption



FCV Purchases per person
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Presence of hydrogen station in
the neighborhood is very
important for FCV adoption.

On the other hand, workplace
charging plays a significant role in
BEV adoption compared to the
presence of public chargers.



Summary

This research estimates spatial distribution of alternative-fueled
vehicle purchases with a consumer choice model

— Segmenting consumers using spatially sensitive attributes such as income,
driving behavior and utility factors related to infrastructure proximity.

Initial results:

— Can match patterns of adoption in higher income, early adopter areas such
as SF Bay Area

— The AFV adoption numbers are higher than expected—better calibration to
data needed

Main challenge: insufficient data at the detailed spatial level



Future Work

Continue calibrating the model, collect more data

Constructing a feedback loop between the years to analyze
vehicle transitions for the next 5-10 years

Split the spatial resolution into 1-sq.mile grids to refine
infrastructure analysis

Analyzing different infrastructure investment patterns (eg.
What are the optimal locations for the next 100 hydrogen
stations? Which pattern would lead to maximum adoption of
FCVs?)

Cost and emissions estimation of the model scenarios






ADDITIONAL SLIDES



Vehicle Prices

Vehicle Prices in the year 2020
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Input Module—Consumer
Characteristics (data)

wibute | Desrption__________Jsouwce

Expressed in annual miles traveled (divided
into seven categories—5000 to 35,000 miles)

Consumer driving
profile

Risk Attitude

Income

Home Charger
Access

Workplace charger
access

Division of consumers based on their
perception of risk towards new technologies:
Early adopters , Early Majority and late

majority .

Average household income. Willingness to pay
for a vehicle technology increases with
increase in income (divided into 5 categories)

Estimates consumers with dedicated garage
access. This determines how much they rely

on public chargers

Estimates consumers with access to

workplace chargers

California Household Travel
Survey (VMT profile at zip code
level)

Early adopter population is
determined from employment
type (tech sector) from ACS
data.

California Household Travel
Survey (Annual household
income)

American Community Survey
2015 (single detached household
percentage at zip code level)

Assumptions are made for each
region (20% for SF bay area, 5%
for SoCal, and 0.1% for the rest
of CA)



Daily VMT Distribution for each

0.06

o
o
a

o
o
B

Probability Density
o o
o o
N w

0

VMT Dist\(bM;I;oggl;tiﬁrgaQnE Mcategory

A\

o O O O O O O O OO0 OO O O O o O o
— N ™ N O ™N 0 OO "1 AN OO < 1D O N
™ = =

Daily eVMT availability (mile)

o
<

190
200
210
220
230
240
250

— <5000
=5000 to 10000
10000 to 15000
15000 to 20000
20000 to 25000
=——25000 to 30000
—> 30000



Map of Existing Hydrogen Station
Locations
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Map of Planned Hydrogen Station
Locations in 2016
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