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Why we (increasingly) need a life cycle approach
for evaluating energy and emissions
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Lifecycle Assessment (LCA)

e A method for characterizing and quantifying and
interpreting environmental flows for a product or
service from a “cradle-to-grave” perspective
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Biofuels LCA shows great variability
between and within pathways
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Source of Variability or

Where does this variability come
from?

Uncertainty

Steps in an LCA
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Current Research

e Philosophy: Integrating systems and “closing
loops” to improve the environmental
performance of biofuels

e Feedstocks
e First generation feedstock (sugar beet)

e Second generation feedstocks (cellulosics)
e Advanced biofuels (algae)



How can we close loops?

e Internal to production systems and external
to productions systems

e Internal Example: Recycling water, carbon,
energy within a production site

e External Example: Valorizing waste flows to find
higher uses of co-products



First Generation: Sugar beet In
California
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Results — deep reductions in GHG
intensity
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e 44% lower than weighted average Cl for California ethanol
e This excludes land use change for all the ethanol pathways
e No iLUC estimates for sugar beets

Alexiades, A; Kendall, A; Winans, K.S., Kaffka, S.R. Sugar beet ethanol (Beta vulgaris L.): A promising
low-carbon pathway for ethanol production in California Journal of Cleaner Production (in press)



Life cycle analysis of biochemical
cellulosic ethanol under multiple
scenarios
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Results for Corn stover ethanol
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The Potential of Microalgae

e Short growth and harvest cycle
(~ 10days)

e High biomass yield and high lipid
content — potential for 10X the
oil production per area than
soybeans

e Avoids competition with
cropland, grow anywhere with
CO,, water (high or low quality)
sunlight, and nutrients

e No indirect land use change
e Use waste streams




Microalgae’s Reality

e Life cycle greenhouse gas (GHG) emissions
e 10to 500 g CO,e/MJ

e Primary energy input
e 0.2-6 MJ/MIJ biodiesel

e (Cost-effectiveness
e $1.64 - $30/gallon biodiesel



Definitions

e Biodiesel is produced by extracting oil and
transesterification process

e Renewable Diesel is chemically the same as
petro-diesel, with no esters in the chemical
composition. May be produced a number of
ways from “green crude” — here we model
green crude from hydrothermal liquefaction



System Description

Oil Extraction/Conversion Technologies

.......................................................................................................................................

Cultivation in
Open Raceway
Pond

Lipid
Extraction
(LE)

Harvesting &

Dewatering Biodlesel

Conversion

i

J
Processes
Recycl Displace
o Cattle Feed
Recycle Algal Cake — :
Displace Co-product |-
Fish Feed Treatments |:
) Alternative,
sl Treatment
Energy & Nutrients AD or HTL

| Recyeling — _| LE Pathway

Cultivation in Harvesting & Hydrothermal R bl
Open Raceway Dewaterig Liquefaction Upgrading egrwal ¢
Pond g (HTL) o

1 j
Recycle [ J [ } [ Displace Soil
Aqueous Phase Biogas Biochar Amendment
Combustion in
Recycle Boiler or CHP
[’ Energy & Nutrients

Recycling HTL Pathway

............................................................................................................................................



System Descriptions

Co-products and Treatment strategies
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Example of nutrient and water
cycling

N losses to
air 4.0% I N Losses to

N fertilizer co-extraction 0.8%
33.6% Algae

Cultivation Oil  |Anaerobic
Harvesting|Extraction| Digestion
96.0% 83.0% 82.2%

N in
Digestate
Solids
28.8%

N in recirculated
culture 13.0%
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Fig. 3. Energy recovery from algal cake through AD or HTL.



Are internal or external loops

better?

e |’ve just shown you results focused on
internal recycling

e \What happensif we include the export of
algal cake for uses outside of the algae
biofuel production system?

e Algal cakeis nutrient and protein
rich...makes a great potential feed for
livestock and aquaculture



Co-Product Allocation Choices

e System expansion (displacement method)

e expands the product system to include additional
procedure related to the co-product
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GHG emissions from Biodiesel and
Renewable Diesel Production with Co-

product Treatment
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External Recycling

e While external recycling has a chance of
leading to displacement of high impact
substitutes and thus generating ultra-low or
negative impacts, it also is highly uncertain
and subject to market forces

e Internal recycling actually eliminates
demand for resources, making calculations
reliable and free of market assumptions and
methodological choices (around allocation).



Current work

e A current project with colleagues at UCD
looking to close loops on the anaerobic
digester here on campus, using the nutrient-
rich effluent and the CO, from biogas
combustion to grow algae and reduce
nutrient loads in the effluent (provide water

treatment).



System Description
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Question?

e Contact information

Alissa Kendall

amkendall@ucdavis.edu
http://faculty.engineering.ucdavis.edu/kendall

e INDUSTRIAL ECOLOGY PROGRAM http://ie.ucdavis.edu/



Next: Test allocation effects in different system
boundaries
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Life cycle performance of Algal
Biodiesel: a function of residual
utilization
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Estimation of Dairy Feed
Displacement by Algal Cake
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LE Co-product Treatment Strategies
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LE Results

Effects of Co-product Treatments on GWP and
Total Energy of Biodiesel

GWP;00 Primary Energy
(g CO,e/MJ) (MJ/MJ)
Before Allocation 226 3.52
Displace Cattle Feed -58.80 -1.24
Displace Fishmeal -9.88 0.05
Recycled with AD 84.77 1.06
Recycled with HTL 124.73 1.77
Eec::)omic Allocation (as 2,89 0.05




Renewable Diesel Results

Effects of co-product treatment on Algal
Renewable Diesel

Primary Energy | Carbon Intensity
(MJ/MJ) (g CO,e/MJ)
Economic
Allocation 0.62 35.64
Energy
Allocation 0.93 33.75
Mass
Allocation 0.93 >3.76
Soil
Amendment 0.76 54.49
Heat and 0.88 51.16
Power
Heat 0.89 52.13
Generation
Before
Allocation 0.95 54.59




