

Life Cycle Assessment

Alissa Kendall Assoc. Prof. Civil & Environmental Engineering

© Alissa Kendall - 2016

Why we (increasingly) need a life cycle approach for evaluating energy and emissions

Lifecycle Assessment (LCA)

 A method for characterizing and quantifying and interpreting environmental flows for a product or service from a "cradle-to-grave" perspective

UCDAVIS Biofuels LCA shows great variability between and within pathways

Kendall and Yuan (2013) Current Opinion in Chemical Biology 17:439-443

UCDAVIS Where does this variability come from?

Steps in an LCA

	r	•		
		Goal and Scope Definition	Life Cycle Inventory	Impact Assessment
bility or	Model and Methods- Induced Variability	 (1) Attributional vs. Consequential (2) System Boundary Selection (3) LUC and cut-off rules (4) Impact Categories Modeled 	 (1) Age and quality of background LCI datasets (2) Co-product allocation methods 	 (1) Impact assessment method and reporting (2) Treatment of time and biogenic GHG emissions
source of Varial Uncertain	Actual Variability and Uncertainty in Biofuel Pathway Performance	 Retrospective vs. Prospective Spatiotemporal heterogeneity Assumptions about climate, soil, cultivation practices, yields and regional energy systems Technology selection or technology configurations 	 Spatiotemporal heterogeneity as reflected in LCI datasets Differences in co-product utilization Real or projected performance differences in production technologies reflected in assessed environmental flows 	 (1) Spatiotemporal heterogeneity as reflected in impact assessment (2) Real or projected performance differences among production technologies as reflected in impact assessment
				Current Opinion in Chemical Biology

Sources of variability and uncertainty at each stage of a biofuel LCA.

Current Research

- Philosophy: Integrating systems and "closing loops" to improve the environmental performance of biofuels
- Feedstocks
 - First generation feedstock (sugar beet)
 - Second generation feedstocks (cellulosics)
 - Advanced biofuels (algae)

How can we close loops?

- Internal to production systems and external to productions systems
 - Internal Example: Recycling water, carbon, energy within a production site
 - External Example: Valorizing waste flows to find higher uses of co-products

UCDAVIS First Generation: Sugar beet in California

UCDAVIS Results – deep reductions in GHG intensity

- 44% lower than weighted average CI for California ethanol
 - This excludes land use change for all the ethanol pathways
 - No iLUC estimates for sugar beets

Alexiades, A; Kendall, A; Winans, K.S., Kaffka, S.R. Sugar beet ethanol (Beta vulgaris L.): A promising low-carbon pathway for ethanol production in California *Journal of Cleaner Production* (in press)

Life cycle analysis of biochemical cellulosic ethanol under multiple scenarios

Murphy, C., Kendall A. *GCB Bioenergy* Volume 7, Issue 5, pages 1019-1033, 14 JUN 2014 DOI: 10.1111/gcbb.12204

Results for Corn stover ethanol

The Potential of Microalgae

- Short growth and harvest cycle (~ 10days)
- High biomass yield and high lipid content – potential for 10X the oil production per area than soybeans
- Avoids competition with cropland, grow anywhere with CO₂, water (high or low quality) sunlight, and nutrients
 - No indirect land use change
- Use waste streams

Microalgae's Reality

- Life cycle greenhouse gas (GHG) emissions
 - **10 to 500** g CO₂e/MJ
- Primary energy input
 - 0.2 6 MJ/MJ biodiesel
- Cost-effectiveness
 - \$1.64 \$30/gallon biodiesel

- **Biodiesel** is produced by extracting oil and transesterification process
- Renewable Diesel is chemically the same as petro-diesel, with no esters in the chemical composition. May be produced a number of ways from "green crude" – here we model green crude from hydrothermal liquefaction

UCDAVIS System Description

Oil Extraction/Conversion Technologies

UCDAVIS System Descriptions

Co-products and Treatment strategies

UCDAVIS Example of nutrient and water cycling

LE or HTL -- Which technology recycles better?

- - - Heat Demand in Algae Oil Production System

Fig. 3. Energy recovery from algal cake through AD or HTL.

Are internal or external loops better?

- I've just shown you results focused on internal recycling
- What happens if we include the export of algal cake for uses outside of the algae biofuel production system?
- Algal cake is nutrient and protein rich...makes a great potential feed for livestock and aquaculture

Co-Product Allocation Choices

- System expansion (displacement method)
 - expands the product system to include additional procedure related to the co-product

- Partitioning methods
 - allocation which divides the environmental flows for the system based on physical causality or on value such as mass, energy content, or economic value

GHG emissions from Biodiesel and Renewable Diesel Production with Coproduct Treatment

External Recycling

- While external recycling has a chance of leading to displacement of high impact substitutes and thus generating ultra-low or negative impacts, it also is highly uncertain and subject to market forces
- Internal recycling actually eliminates demand for resources, making calculations reliable and free of market assumptions and methodological choices (around allocation).

Current work

 A current project with colleagues at UCD looking to close loops on the anaerobic digester here on campus, using the nutrientrich effluent and the CO₂ from biogas combustion to grow algae and reduce nutrient loads in the effluent (provide water treatment).

System Description

Question?

- Contact information
- Alissa Kendall
- amkendall@ucdavis.edu
- http://faculty.engineering.ucdavis.edu/kendall

Next: Test allocation effects in different system boundaries

Framework 1: Algae biodiesel production as co-located independent production system

Framework 2: Consider AD and Algae Biodiesel as one integrated system.

Life cycle performance of Algal Biodiesel: a function of residual utilization

Transport & Conversion

Yuan, J, Kendall, A, and Zhang, Y. GCB Bioenergy (2014), doi: 10.1111/gcbb.12229

Estimation of Dairy Feed Displacement by Algal Cake

LE Co-product Treatment Strategies

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Utilization of Algal Cake	Economic Allocation	Displace CA Dairy Cattle Feed	Displace Fishmeal	Process in Anaerobic Digester (AD)	Process in Hydrothermal Liquefaction (HTL)

LE Results

Effects of Co-product Treatments on GWP and Total Energy of Biodiesel

	GWP ₁₀₀ (g CO ₂ e/MJ)	Primary Energy (MJ/MJ)
Before Allocation	226	3.52
Displace Cattle Feed	-58.80	-1.24
Displace Fishmeal	-9.88	0.05
Recycled with AD	84.77	1.06
Recycled with HTL	124.73	1.77
Economic Allocation (as feed)	2.89	0.05

Renewable Diesel Results

Effects of co-product treatment on Algal Renewable Diesel

	Primary Energy (MJ/MJ)	Carbon Intensity (g CO ₂ e/MJ)
Economic Allocation	0.62	35.64
Energy Allocation	0.93	53.75
Mass Allocation	0.93	53.76
Soil Amendment	0.76	54.49
Heat and Power	0.88	51.16
Heat Generation	0.89	52.13
Before Allocation	0.95	54.59