SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

Fuel Cells and Hydrogen in Long-Haul Trucks

Andrew Burke
Hengbing Zhao
5/23/2017

Outline of the Presentation

- Status of fuel cell truck demonstrations
- The Fuel cell truck drivelines
- Hydrogen fuel consumption
- Compressed gas hydrogen storage on the trucks
- Cryo-compressed hydrogen storage on the trucks
- Hydrogen refueling stations along highways
- Technical and cost challenges

Fuel cell truck demonstrations

- Drayage trucks at ports (ex. TransPower)
- Refuse trucks
- Tyrano (Vison Motor Corp.)
- Nikola One (Nikola Motor Corp.)
- Project Portal (Toyota)

Vision's Tyrano

Source: Vision Motor Corp., 2012.

Nikola One

Nikola One Drivetrain Arrangement (Source: nikolamotor.com)
(1) front radiator assembly; (2) front motor gearbox; (3) power electronics; (4) battery storage system;
(5) chiller and air tanks; (6) fuel cell; (7) hydrogen fuel system; (8) rear motor gearbox; (9) 5th wheel

Hydrogen Fuel Cell Electric Trucks

Specification \& performance comparison of Tyrano and Nikola One

Fuel Cell Trucks	Tyrano	Nikola One
Motor	320 kW	2 motors with power up to 1000 hp
Fuel Cell	65 kW	300 kW
Battery	130 kWh	320 kWh
Hydrogen Fuel	20 kg Compressed hydrogen at 350 bar	Not available (estimated 100 kg) in compressed or liquid hydrogen form
Refuel Time	10-15 min. at 430 bar	15 minutes (Nikola Stations)
Charging Port	Level 2	DC Fast
Range	200 miles	800-1,200 miles
Weight	Not available	2,000 lbs lighter than a diesel truck
Application	Class 8 short haul semi day cab	Class 8 long haul semi sleeper cab
DAVIS		

Toyota fuel cell truck Project Portal Port of LA/LB

Two Mira fuel cells (230 kW), 12 kWh battery, 300 kW motor (est.), 200 mile range fully loaded, 25 kg H 2 (est.)

Inputs for the simulations

Class 8 Truck Inputs (33,000-80,000 lbs)

Component	Model Character istics
Aero Drag Coefficient (Cd)	0.6
Frontal Area (A: m2)	10
Tire Rolling Resistance (eta)	0.0065
Curb Weight Including Empty Trailer (kg)	15,700
Gross Vehicle Weight Rating (kg)	$25,400 \mathrm{~kg} *$
Transmission 10 Speed efficiency	98%
Axle Efficiency	98%
Electrical Accessories	4 kW
Motor Efficiency	94%
Inverter Efficiency	99%
Average mileages	$500 \mathrm{miles} /$ day
	90,000 miles/year
* 70\% of the rated load of $36,280 \mathrm{~kg}$	

Hydrogen consumption of long haul fuel cell trucks

Long haul (highway) trucks

2030

Long haul* Driving cycles	mi/gal gasoline equiv.	$\mathrm{mi} / \mathrm{kgH}_{2}{ }^{* *}$	kgH_{2} for 100 miles	kgH_{2} for 300 miles	kgH_{2} for 500 miles
GEM65	8.9	8.5	13.07	39	65
GEM55	9.4	9.0	12.35	37	62
HHDT-CR	9.9	9.45	11.76	35	59
65 mph const	8.8	8.4	13.23	40	66

${ }^{*} C_{D}=.55, A_{F}=9.5, \mathrm{wt} .=29500 \mathrm{~kg}, \mathrm{f}_{\mathrm{r}}=.0055,1.5 \mathrm{~kW}$ access. load
2050

Long haul *	mi/gal gasoline equiv.	$\mathrm{mi} / \mathrm{kgH}_{2} * *$	kgH_{2} for 100 miles	kgH_{2} for 300 miles	kgH_{2} for 500 miles
Driving cycles	9.2	8.78	12.66	38	63
GEM65	10.1	9.64	10.37	31	52
GEM55	10.9	10.41	10.67	32	53
HHDT-CR	9.3	8.8	11.36	34	57
65mph const	2				

${ }^{*} C_{D}=.45, A_{F}=9.5, \mathrm{wt} .=29000 \mathrm{~kg}, \mathrm{f}_{\mathrm{r}}=.005,1.5 \mathrm{~kW}$ access. load

Comparisons of energy use with FC and other drivelines

Highway driving at 65 mph
Long haul truck

powertrain	$\mathrm{mi} /$ galD	Ratio
Diesel	8.2	1.0
H2FC	9.9	1.21

Intercity bus

powertrain	mi/galD	Ratio
Diesel	10.1	1.0
H2FC	16.9	1.7
EV	26.1	2.6

HD pickup truck

powertrain	$\mathrm{mi} / \mathrm{galD}$	Ratio
Diesel	23.5	1.0
Hybrid diesel	31	1.3
H2FC	38.7	1.7
EV	82.7	3.5

Hydrogen storage on-board the truck

- Compressed gas 5-10 kpsi
- Liquid (23 deg K, 4 atm.)
- Cryo-compressed ($\mathbf{3 8} \mathbf{~ d e g ~ K , ~} 300 \mathrm{~atm}$.)

CRYO-COMPRESSED HYDROGEN STORAGE. SYSTEM LAYOUT - BMW PROTOTYPE 2011.

BMW CRYO-COMPRESSED HYDROGEN STORAGE. STORAGE SYSTEM VOLUME COMPARISON.

BMW CRYO-COMPRESSED HYDROGEN STORAGE. STORAGE SYSTEM WEIGHT COMPARISON.

Hydrogen storage technology comparisons (DOE)

Current status of hydrogen storage technologies [Stetson, 2016]

Storage Targets	Gravimetric kWh/kg ($\mathrm{kg} \mathrm{H}_{2} / \mathrm{kg}$ system)	Volumetric kWh/L ($\mathrm{kg} \mathrm{H}_{2} / \mathrm{L}$ system)	Costs \$/kWh $\left(\$ / \mathrm{kg} \mathrm{H}_{2}\right)$
2020	$\begin{gathered} 1.8 \\ (0.055) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.040) \end{gathered}$	$\begin{gathered} \$ 10 \\ (\$ 333) \end{gathered}$
Ultimate	$\begin{gathered} 2.5 \\ (0.075) \end{gathered}$	$\begin{gathered} 2.3 \\ (0.070) \end{gathered}$	$\begin{gathered} \$ 8 \\ (\$ 266) \end{gathered}$
Projected H_{2} Storage System Performance (5.6 kg H H usable)	Gravimetric kWh/kg ($\mathrm{kg} \mathrm{H} / 2 / \mathrm{kg}$ system)	```Volumetric kWh/L (kg H2/L system)```	$\begin{aligned} & \text { Costs* } \\ & \$ / \mathrm{kWh}^{2} \\ & \left(\$ / \mathrm{kg} \mathrm{H}_{2}\right) \end{aligned}$
700 bar compressed (Type IV, Single Tank)	$\begin{gathered} 1.4 \\ (0.044) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.024) \end{gathered}$	$\begin{gathered} \$ 15 \\ (\$ 500) \end{gathered}$
Metal Hydride ($\mathrm{NaAlH}_{4} / \mathrm{Ti}$)	$\begin{gathered} 0.4 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.012) \end{gathered}$	$\begin{gathered} \$ 43 \\ (\$ 1,432) \end{gathered}$
Sorbent (MOF-5, 100 bar, MATI, LN2 cooling)	$\begin{gathered} 1.3 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.020) \end{gathered}$	$\begin{gathered} \$ 16 \\ (\$ 533) \end{gathered}$
Chemical Hydrogen Storage (AB-50 wt.\%)	$\begin{gathered} 1.4 \\ (0.043) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.040) \end{gathered}$	$\begin{gathered} \$ 17 \\ (\$ 566) \end{gathered}$

* projected at 500,000 units per year (light-duty vehicles)

Comparisons of the various hydrogen storage technologies with the DOE goals

Storage of 25kgH2 useable	Compressed gas (350 atm.)	Cryo-compressed BMW)	DOE goals	
Weight (kg)	500	$250^{* *}$		
Volume (L)	988	$607^{* *}$		
			2020 ultimate	
kgH2/kg syst.	$.050(.044)^{*}$.100	.055	
KgH2/L syst.	$.025(.024)^{*}$.041	.04	
	.07			

*present status from DOE
** 3400 Wh/kg, 1400 WH/I

Vehicle Component Cost (2025)

Fuel_Cell_Cost	80	$\$ / \mathrm{kW}$
H2_Storage_Cost	500	$\$ / \mathrm{kgH2}$
Battery_Cost	300	$\$ / \mathrm{kWh}$
Motor_Cost	15	$\$ / \mathrm{kW}$
Motor_Ctrl_Cost	10	$\$ / \mathrm{kW}$
WPT_Receiver_Cost	25	$\$ / \mathrm{kW}$

Projected Truck Cost for 2025

Long-Haul Trucking Technology	Conv. Diesel	H2 Fuel Cell	Catenary Electric	Dynamic Charging
Glider	$\$ 95,539$	$\$ 95,539$	$\$ 95,539$	$\$ 95,539$
Engine	$\$ 21,881$	-----	-----	-----
Aftertreatment	$\$ 15,750$	-----	-----	-----
Transmission	$\$ 8,549$	$\$ 2,000$	$\$ 2,000$	$\$ 2,000$
Fuel cell	-----	$\$ 24,000$	-----	-----
Hydrogen storage	-----	$\$ 36,000$	-----	-----
Battery	-----	$\$ 15,000$	$\$ 30,000$	$\$ 30,000$
Active pantograph \& converter	-----	-----	$\$ 6,500$	
wireless charge receiver	-----	-----	-----	$\$ 8,000$
Motor and controller	-----	$\$ 8,750$	$\$ 8,750$	$\$ 8,750$
Truck Cost	$\mathbf{\$ 1 4 1 , 7 1 9}$	$\mathbf{\$ 1 8 1 , 2 8 9}$	$\mathbf{\$ 1 4 2 , 7 8 9}$	$\mathbf{\$ 1 4 4 , 2 8 9}$

Infrastructure Cost for a 500-Mile Zero-Emission Highway Section

Long-Haul Highway Trucking Technology Scenarios	Conv. Diesel Truck	Hydrogen Highway	Catenary Electric Highway	Dynamic Inductive Charge Highway
Diesel station capital cost (\$)	0	-----	-----	-----
Traction power distribution system				
Catenary system (\$/route mile)	-----	-----	4,600,000	-----
Dynamic wireless charger (\$/route mile)	-----	-----	-----	6,400,000
Hydrogen refueling stations (based on $\$ 21.8 \mathrm{M} /$ sta. for a 3000kgH2/da. station)		672,530,000 *		
Daily fuel/electricity demand (DGE)	98,924	75,908	157,083	181,107
Daily h2 demand (kg) \$4/kg H2		370, 200		
Daily electricity demand (kWh)			6,377,551	7,352,941
Total Electric power demand (kW)			261,643	301,659
Substation power rating (kW)			20,931	24,133
No. of Fuel Stations/Electrified Zones	10	10	13	13
Daily Station Diesel Supply (gallon/station)	9,892			
Daily Station H2 Supply (kg/station)		9,255		
Electric Power Demand (kW/electrified zone)			20,931	24,133
Infrastructure Cost (500 route miles)	\$0	\$673,661,680	\$1,150,000,000	\$1,600,000,000

*assumed base cost $\$ 20 \mathrm{M}$ for a $3000 \mathrm{kgH} 2 /$ day station

Technical and cost challenges

Fuel cell

- Reduce cost ($\$ / \mathrm{kW}$)
- Increase durability at high loads to at least $20,000 \mathrm{hr}$.

Hydrogen storage on board truck

- Increase $\mathrm{kgH} 2 / \mathrm{L}$ to at least .05
- Increase cycle life to at least 3000 (full to empty)
- Reduce cost to at least $\$ 300 / \mathrm{kgH} 2$

Long haul truck

- Integration of electric drive, hydrogen storage, and power battery into the tractor/cab
- Reduce the cost of the fuel cell truck to be comparable to the diesel truck of the same range

Technical and cost challenges

Hydrogen refueling stations

- Increase dispensing capability to $9000 \mathrm{kgH} 2 /$ day and rate of dispensing to $20-25 \mathrm{kgH} 2 / \mathrm{min}$
- Store $40,000-50,000 \mathrm{kgH} 2$ at the station or provide for on-site generation to meet H2 demand
- Store/dispense H2 as liquid and/or cryo-compressed gas
- Reduce cost of on-site storage and on-site generation

Conclusions - Fuel cells in trucks

- Near term

Urban, regional applications-drayage at ports, delivery, etc., range less than 200 miles

- Longer term

General long haul freight applications, range up to at least 500 miles, to replace diesel trucks

