Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications

Patric Ouellette, Lew Fulton

STEPS Presentation May 24, 2017

Intro and Question

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Fuel Properties

	Gasoline	Ethanol	Diesel or Renewable Diesel	ED95	DME	CNG/LNG
Formula	$C_n H_{1.87n}$	CH ₃ CH ₂ OH	C _n H _{1.87n}	CH ₃ CH ₂ OH	CH ₃ OCH ₃	CH _{3.8}
LHV [MJ/L]	33.0	21.1	35.7	20.5	19.3	10.2 / 22.5
Combustion CO ₂ [gCO ₂ /MJ _{fuel}]	70.0	70.9	74.2	77.3	66.3	56.1
Pump Octane #	84-93	110	-	-	-	120+
Cetane #	-	-	40-55	~10	55-60	-
Boiling Point [°C]	35-200	78	180-370	-	-25.1	-161.5
Flash Point [°C]	-40	13	64	12	-41.1	-184
Flammability Limits (%)	1.4 to7.6	3.3 to 19.0	0.6 to 5.6	-	3.4-17	5-15

Table 1 - Fuel Properties

Sources : (AFDC, 2104), (Heywood, 1988), (The University of California, 2015), Barbosa 2015, Wang 2017, (Szybist, 2014), Arcoumanis 2008, other (web), calculated

Ethanol - Spark-Ignited approach

- Dedicated HD SI engine
- Ethanol Fuel System
- TWC easier to reach ultra-low NOx
- Efficiency Potential
 - Faster flame than NG
 - Some level of charge cooling, especially if went DI
 - May not have to use as large a knock margin to accommodate wide fuel composition of NG
 - Likely could do close to or a little better than a CNG engine – say within 5 to 10% of diesel engine.

HD SI Engine: CWI ISX12G

Ethanol: Scania ED95 Compression Ignition Solution

- 4th generation ED95 engine
- ED95: 95% hydrous ethanol + additive package
 - Cetane enhancer
 - Denaturant
 - Lubricity additive
 - Corrosion Inhibitor
- Increased compression ratio (28:1)
- Larger capacity injector nozzles and fuel pump
- Fuel system materials resistant to ethanol
- Different Lubricating oil
- Reported efficiency very close to diesel

13 October 2015

New Euro 6 bioethanol engine from Scania

- Scania is introducing a 9-litre inline 5 engine with 280 horsepower that runs on ED95 (bioethanol with ignition improver)
- Runs on the diesel principle with compression ignition
- Delivers 1,250 Nm, characterised by good driveability, efficient aftertreatment and high efficiency (corresponding to diesel levels)

Compromise: Cold-start capability vs. max cylinder pressure (power)

Ethanol RCCI Concept

- RCCI: Reaction-Controlled
 Compression Ignition
- Typically achieved with 2 fuels of different reactivity, such as gasoline and diesel
- Low reactivity fuel (gasoline) is typically port injected – controls overall AFR
- High reactivity fuel (diesel) is directly injected, often in 2 injections, with the first injection relatively early in the compression stroke – controls Ignition
- Achieves the low temperature combustion of HCCI, but much easier to control and heat-release rate is smoother than HCCI

- Reitz report peak gross indicated efficiency for diesel-E85 of 59% which compares to 48% for conventional diesel combustion. This is achieved at mid load.
- Reitz report that similar results are obtained when ignition additives are used with gasoline (and presumably ethanol) instead of a second fuel like diesel.
- Potential for 5-10% improvement?

Engine and Vehicle Technologies for DME

DME

- is a non-toxic chemical
- High oxygen content (35% by mass) and no C-C bonds so very clean burning, does not soot.
- Liquid under moderate pressures (5 bar) like propane.
- Like propane it is denser than air, so caution must be exercised
- ~60% of the volumetric energy density of diesel, it has a high compressibility for a liquid and has low lubricity, low viscosity so leaks easily between metal-metal seals
- Corrosive to certain elastomers

- No DPF needed
- Likely strategy is to use SCR for NOx treatment to achieve best efficiency
- May require special oxidation catalyst formulation to treat formaldehyde
- Similar efficiency as diesel achieved
- Requires a new fuel injection system (lubricity, energy density, storage, vapor avoidance within fuel lines)
- May require different lubricating oil

Feedstock Gathering

- There are detailed models for the farming, fertilizers, gathering and transport, and LUC of
 - Corn Stover
 - Switchgrass
 - Forest Residues

Feedstock Conversion

- There is a detail model for the conversion of Corn Stover and Switchgrass to Ethanol through fermentation
- There is a detail model for the conversion of Forest Residue to Ethanol through gasification
- There are simplified models for the conversion of Corn Stover, Switchgrass and Forest Residues to DME and FTD

WTT Results

GREET 2016			
Conversion Process Efficiency ¹	45.0%	54.8%	47.8%
Fuel Yield	93.5%	55.3%	89.1%
GHG [gCO ₂ /MJ _{fuel}]	-57.4	-220	-77.8

¹ Conversion of biomass to fuel and electricity – electricity displaces electricity mix

Other References			
Conversion Process Efficiency ¹	47% (Wang 2012)		52% (Xie 2011)
GHG [gCO ₂ /MJ _{fuel}]	-65 (Wang 2012) -97 to -67 (EPA RFS)	-60 (Lee 2016)	-50 (Xie 2011) -76 to -35 (EPA RFS)

WTW Ranges

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Ethanol

- Could possibly lead to lower WTW GHG than FTD, with largest reduction from RCCI strategy
- Ethanol SI should lead to ultra low NOx emissions more easily/robustly and still provide very good GHG reductions
- Ethanol could lead to some vehicle cost reductions
- WTW GHG Reduction may not be sufficient enough to warrant several significant challenges with ethanol
 - Infrastructure changes and investment needed, may require a fraction of Fischer-Tropsch Gasoline, reduced range, safety aspects
- But can't rule it out as there may be other reasons why it might be attractive (uniformity of supply? cost? maximum yield, etc...)

• DME

- Looks very good from a GHG perspective, owing to both lower carbon content per unit energy and low upstream emissions;
- GHG benefits are more dependent on co-electricity generation; may not look as good in future when grid is more de-carbonized;
- Confidence in results is limited by available information, need more studies of DME made from biomass sources.
- Vehicles should not be more expensive in long term;
 infrastructure investment non negligible, but easier than NG

Outline

- Biomass and biofuels considered
- Vehicle efficiency potential and impact
- Biofuels production
- Conclusions

Biofuels considered

3 Liquid Biofuels	3 Common Biomass Sources	
Ethanol	Fermentation of Corn Stover	
Dimethyl Ether	Gasification of Switchgrass	
Renewable Diesel	Gasification of Forest Residues	

Fuel Production Considerations

- Question: out of a large amount of biomass (agricultural waste, forestry residues, energy crops), which of the fuels considered could be produced with lowest energy and carbon intensity?
- Examined the available pathways to make ethanol, DME and Renewable Diesel (as Fischer-Tropsch Diesel or FTD) from biomass
 - Reviewed recent literature (mostly focused on US)
 - Used GREET2016
- Context
 - Large scale : so did not look into smaller feedstocks
 - Large CO₂ reduction potential: no significant fossil fuel input
 - Common feedstock for all 3 fuels so as to compare

