Carbon Intensity of Natural Gas
C8 trucks in Transportation
(focus on long haul)



[LCA models

LEAP and BioGRACE (EU)
EPA models (RFS2)
CAGREET1.8 (LCFS)
CAGREET2.0 (updated LCFS)

OPGEE (ARB) for upstream carbon intensity
of 270 individual crude oil producing fields
and crude blends

GHGGenius (Canada)
GREET1 2014 (this study)



Updates in GREET1 2014

Added Heavy Duty Vehicle module

Added Black Carbon and Organic Carbon
(SLCP- short lived climate pollutants)

Added emissions of oil drilling (still not shale
oil pathway)

Updated stationary combustion emission
factors

Update of refining efficiency and GHG of
petroleum products

Expanded oil sands modeling



Boundaries of
Life Cycle Analysis

Well To Tank (WTT) ' -

Well To Wheel (WTW)




Are NGV trucks less carbon
intensive than diesel trucks?
It depends

Geographic scope
Upstream leakage
Vehicle type

— Fuel economy

— Methane slip

GWP100
LHV/HHV



Our scope is national:
National average for methane
leakage

EPA/EIA= 1.2-1.5%

Actual leakage 25-75% higher than EPA’s 1.5% estimate (Brandt et al.)

“superemitters” (e.g. sources with extremely high emissions, much larger than normal
operation) (Brandt et al.)

Abandoned wells (Kang et al.)

Estimates from airborne measurements were typically higher than inventories.... studies
estimating high leakage rates, such as those done by the National Oceanic and Atmospheric
Administration, including Karion et al. (2013), were unlikely to be representative of the NG

industry since those emissions would exceed the unaccounted emissions from all sources.

Corrected: 1.87% -2.95 %

We will test 0 to 3%



Methane Leakage in Natural Gas Systems
GREET1 2014
(total: 235 gCH4/mmBtu)

Total
1.14%

Transmission and
Storage
0.39%

Production Distribution
0.31% 0.31%

Processing
0.13%




Diesel 5.9 mpg (fuel economy)
Natural gas 5.6 HPDI (95%), 5.0 SI (85%)
Diesel 0.005 gCH4/mi (methane slip)
Natural gas 4.2 g/mi HPDI, 3.84 g/mi Si




Physical Properties of natural gas,
diesel and methane

« GWP100: 30

« LHV:
— 983 Btu/ft3 NG
— 740,720 Btu/gal LNG
— 128,450 Diesel



What does this mean for the carbon
intensity of NGV C8 trucks?
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Summary of results

Majority of emissions happen in TTW
— Suggests improving fuel economy is key

WTT CNG is dominated by methane leaks

WTT LNG is dominated by high energy
inputs of liquefaction

BLR is 3% for HPDI and ~0% for SI



Limitations of this analysis

« What if leakage was higher/lower?
« What about biogas?

* Only long-haul trucks, what about
refuse trucks, buses?



e Short haul trucks
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% difference short haul trucks
(baseline is diesel)
5.8 mpg (diesel) vs. 4.9 (SI) vs.5.5 (CI)
0.002 gChg4/mi (diesel) vs. 5.225 (SI) vs 1.663 (CI)
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% difference refuse trucks
(baseline is diesel)
3.0 mpg (diesel) vs. 2.6 (natural gas)
0.002 gCH4/mi (diesel) vs. 0.805 (natural gas)
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0.003 g CH4/mi (diesel) vs 0.098 (natural gas)

% difference school buses
(baseline is diesel)
7 mpg (diesel) vs 6 (natural gas SI)
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% of landfill renewable gas

What percentage of renewable
under each leakage?
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Another limitation to this analysis

 GREET1 Lacks granularity

» Not good for state specific
analyses (e.g. LCFS)



Differences with LCFS

 Different functional unit: Carbon Intensity of
Fuel vs. Carbon Intensity of Transportation

gCO2e/mi vs. gCO2/MJ

« CAGREET1.8 (2009)

 No shale
 No drilling/fracking emissions

* No methane leakage
* Old GWP numbers

» California specific numbers (CAGREET2.0)



LCFS vs. new LCFS
(GCO2e/MJ)

« ARB has very recently proposed new LCA
numbers for NGVs via the LCFS that are
~10% worse than before (and even more

so for LNG).

» They are proposed for adoption in
February, to take effect in 2016.



Important differences between
national and California results

 It’s not the Leakage Rate!

» Other factors that affect upstream
emission:
— Distribution distances
— Oil mix /Gas mix
— Renewable electricity

— Co-benefit of tighter air quality control for
stationary sources



Take home points

NGV trucks only better than diesel if equal or better fuel economy

When a high efficiency engine option is not available (refuse trucks,
buses...) natural gas always performs worse.

Majority of emissions happen in TTW
» Suggests improving fuel economy and reducing methane slip is key

WTT CNG is dominated by methane leaks whereas WIT LNG is dominated
by high energy inputs of liquefaction

BLR is 3% for HPDI and ~0% for SI

1% leakage is offset by 10% RNG blend,
3% leakage is offset by 20% RNG blend
10% leakage is offset by ~50% RNG blend

* In California,

All fuels have a lower carbon intensity due to
» Renewable electricity
 Tighter air quality standards
Leakage rate assumed as the US average but distances and distribution
option change.
CNG could be better than LNG if compressors use renewable electricity

Vehicle fuel economy is still key
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Drilling/Production/Processing = 0.8%
Transmissions/Distribution= 0.7%
Refueling stations/Vehicles = NA
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Where are the leaks?

4 2009 U.S. methane emissions from oil and natural gas industry:
624 Bcef (3.8% of total U.S. greenhouse gas emissions)

Oil Downstream
Processing 2< fg Bcf = billion cubic feet
44 Bcf
7%

Distribution

72 Bef
11%

Transmission
and Storage

Production

110 Bcf
Storage Tank  eters and Bof = billion cubic feet 18%
Venting ineli
14 Bef Plpe:lgeBtfeaks Other Sources
Compressor Fugitives,Venting, 13 Bof
and Engine Exhaust
18 Bef
Dehydrators
and Pumps’
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Offshore Operations
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Well Venting and
Flaring
217 Bef

Pneumatic Devices
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Gathering and Processing

Dehydrators Bcf = billion cubic feet
Plant and Pumps
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> Bef \ Othe: Sscélfxrces
Blowdowns 2 /

Reciprocating
Compressors
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Bef

Gas Engine :
Exhaust |
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Centrifugal
Compressors
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Source: EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 — 2009. April, 2011. Available on the Web at:
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Source: EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 — 2009. Apri, 2011. Available on the Web at:
pa. i html
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Technology Payback

Green Completions

Plunger Lift Systems

TEG Dehydrator Emission
Controls

Desiccant Dehydrators

Dry Seal Systems

Improved Compressor
Maintenance

Pneumatic Controllers
Low-Bleed

Pneumatic Controllers
No-Bleed

Pipeline Maintenance
and Repair

Vapor Recovery Units

Leak Monitoring and Repair

$8,700 to $33,000 per well

$2,600 to $13,000 per well
Up to $13,000 for 4 controls

$16,000 per device
$90,000 to $324,000 per device

$1,200 to $1,600 per rod packing
$175 to $350 per device
$10,000 to $60,000 per device

Varies widely
$36,000 to $104,000 per device

$26,000 to $59,000 per facility

7,000 to 23,000 Mcf/well

600 to 18,250 Mcf/year
3,600 to 35,000 Mcf/year

1,000 Mcf/year
18,000 to 100,000 Mcf/year

850 Mcf/year per rod packing
125 to 300 Mcf/year
5,400 to 20,000 Mcf/year

Varies widely but significant
5,000 to 91,000 Mcf/year

30,000 to 87,000 Mcf/year

$28,000 to $90,000 per well

$2,000 to $103,000 per year
$14,000 to $138,000 per year

$6,000 per year
$280,000 to $520,000 per year

$3,500 per year
$500 to $1,900 per year
$14,000 to $62,000 per year

Varies widely by significant

$4,000 to $348,000 per year

$117,000 to $314,000 per
facility per year

Note: Profit includes revenue from deployment of technology plus any O&M savings or costs, but excludes depreciation. Additional details provided in Appendix A.
Source: NRDC analysis of available industry information. Individual technology information sources cited in Chapter 4.

Source: EPA Natural Gas STAR Program. NRDC leaking profits

<0.5-1year

<1 year
<05 years

< 3years

0.5-1.5years

0.5 years

<0.5-1year

<2 years

<1 year
0.5-3years

< 0.5 years



EPA Natural Gas STAR Program

2012 Methane Emissions Reductions by Sector (66 Bcf)
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Source: EPA Natural Gas Star Program
http://www.epa.gov/gasstar/accomplishments/index.html



