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RESEARCH QUESTION

EARLY STAGE CAPITOL CORRIDOR

SIMULATION CHARTS

Passenger rail has been on the upswing (APTA/Amtrak). As this mode of travel
continues to thrive, reducing emissions from rail will depend largely on fuel technologies
(as with automobiles) This research, which will eventually also incorporate freight rail, 1s
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development of train trajectories with a MATLAB®/Simulink®-based tool that allows
for s detailed analysis of the energy flows throughout the train’s drive system, resulting
in a “bottom-up” (1.e. beginning with the wheels) assessment of power/energy
requirements and fuel consumption.
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The MATLAB®-based Single Train Simulator (STS), developed by the University of
Birmingham (UK), uses a combined forward/backward distance-based technique for
the production of parameterized speed profiles for user-defined route and vehicle
characteristics. It uses train kinematics and Euler’s method to develop duty cycles,
taking into consideration speed, acceleration and power limitations. (The “STS” has
been utilized 1n several studies in Europe for the development of trajectories over
specific routes and calculation of power and energy requirements at the wheel.)
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Locomotive Characteristics:
- Maximum Speed: 125 mph
—>Rated Voltage: 1080 V @ 50 Hz
- Rated Power (Max): 4,400 hp @ 1,800 rpm &
-> Operating Range: 600 to 1,800 rpm '
- Head End Power: 350 kW
> Tractive Effort (Max): 65,000 lbs / 290 kN

* Examine Caltrain, one switcher route, and two U.S. mainline freight routes
 Examine costs of different scenarios
* Analyze lifecycle CO, and pollutant impacts
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