

## Introduction

## Problem:

Conventional fixed-route, fixed-schedule bus and rail services are highly efficient in dense traffic corridors, but not in suburban areas, where long-term, cost-effective solutions to bridging the first and last mile gap have eluded planners for decades. Current transportation systems in suburban areas present barriers toward sustainable mobility:

- Public transit: limited transit stations, unreliable services, accessibility
- Park-and-ride: expensive and inefficient over time
- Private vehicles: externalities (e.g., traffic congestion, emissions)

### Research:

Evaluate the potential of using shared mobility services to improve first and last mile transit access programs

- Using the San Francisco Bay Area activity based travel demand model (MTC-ABM) and the dynamic assignment model (MATSim)
- Focus on AM peak work trips originated from suburban areas (first mile) which can possibly shift from SOV to BART transit line
- Estimate travel demand, energy and emission impacts of this first and last mile transit access

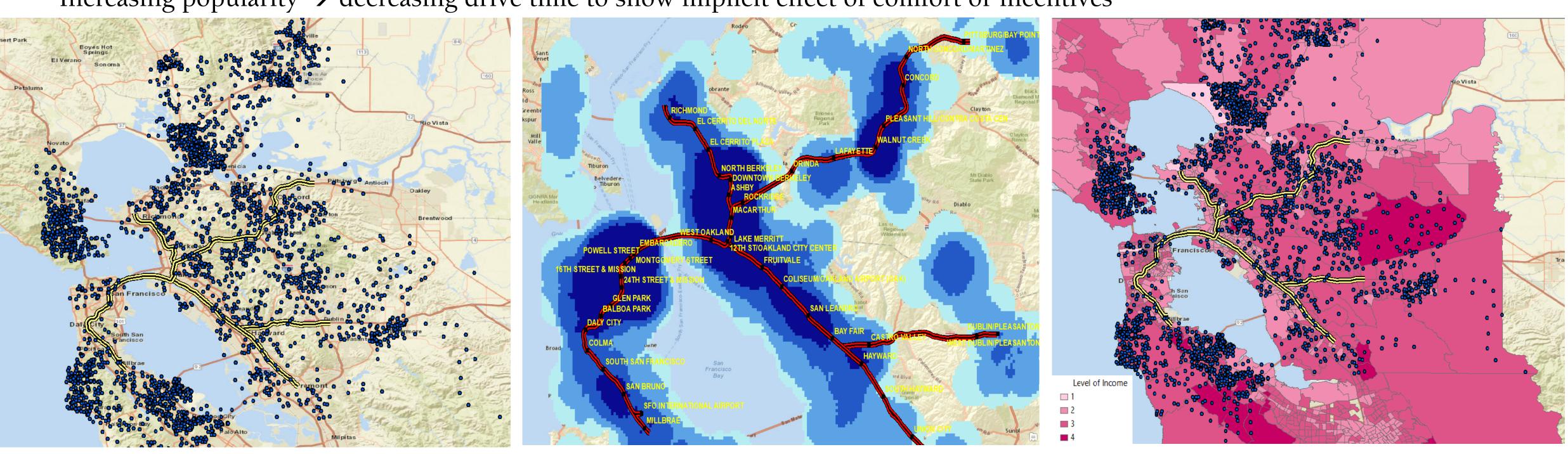
## **Contributions**:

Consider research-based assumptions about travel demand and supply, improving from previous research (Fagnant and Kockelman, 2014; Spieser et al., 2014; Zhang et al., 2015) Use of continuous approximation models to improve computation efficiency over discrete models

# Methods and Data

- 1. Analyze the mode and destination choice models of the MTC-ABM to identify important factors affecting mode choice decisions
- 2. Update drive to BART's utility function
- 3. Implement case scenario and identify the potential market share for ridesharing first/last mile transit access
- 4. Develop continuous approximation models to explicitly solve facility location and routing problems for pick-up and drop-off decisions (In progress)
- 5. Simulate the scenarios and evaluate the results using MATSIM (In progress)

An Institute of Transportation Studies Program


## UCDAVIS

## **Estimating the Potential Demand for Shared Mobility in First/Last Mile Transit Using MTC Travel Demand Model**

Miguel Jaller, Caroline Rodier, and Elham Pourrahmani\* Institute of Transportation Studies, University of California, Davis - December 2017

# Modeling Process and Results

Identifying important factors impacting mode choice decision and modifying the BART's utility function Increase accessibility  $\rightarrow$  relaxing age restriction and auto ownership Increasing popularity  $\rightarrow$  decreasing drive time to show implicit effect of comfort or incentives



Individuals shift from SOV to the modified mode with BART line for AM work trip a) origins b) destination density and BART stations c) origin and level of income

Comparis

|             | DA trips  | SR trips | WT trips | Other DT | drv_BART | VMT        | VMT_DA     | VHT                | VHT_DA    |
|-------------|-----------|----------|----------|----------|----------|------------|------------|--------------------|-----------|
|             | •         | •        |          | trips    | trips    | Total      | —          | Total              | _         |
| Time period |           |          |          |          |          |            |            |                    |           |
| EA Base     | 238,654   | 43,543   | 10,722   | 2,512    | 8,206    | 8,154,436  | 5,586,320  | 167,609.7          | 117,794.1 |
| New         | 237,822   | 43,276   | 10,477   | 2,289    | 11,084   | 8,193,250  | 5,626,755  | 168,337.1          | 118,538.9 |
| change %    | -0.35     | -0.61    | -2.29    | -8.88    | 35.07    | 0.48       | 0.72       | 0.43               | 0.63      |
| AM Base     | 1,697,326 | 335,051  | 175,328  | 31,516   | 67,455   | 38,882,379 | 29,959,653 | 1,030,093          | 796,783.5 |
| New         | 1,682,549 | 330,020  | 171,484  | 26,826   | 90,640   | 38,708,678 | 29,797,524 | 1,023,819          | 791,552.7 |
| change %    | -0.87     | -1.50    | -2.19    | -14.88   | 34.37    | -0.45      | -0.54      | -0.61              | -0.66     |
| MD Base     | 580,695   | 105,079  | 47,836   | 4,990    | 11,876   | 60,449,638 | 23,141,447 | 1,875,220          | 709,176.9 |
| New         | 576,387   | 103,648  | 47,078   | 4,437    | 15,763   | 60,474,025 | 23,146,499 | 1,879,464          | 710,168.5 |
| change %    | -0.74     | -1.36    | -1.58    | -11.082  | 32.73    | 0.040      | 0.02       | 0.23               | 0.14      |
| PM Base     | 1,543,295 | 293,036  | 149,233  | 22,555   | 47,160   | 48,415,777 | 30,437,141 | 1,385,726          | 895,515.6 |
| New         | 1,529,689 | 288,880  | 146,111  | 19,420   | 62,802   | 48,348,530 | 30,358,994 | 1,382,791          | 892,757.1 |
| change %    | -0.88     | -1.42    | -2.092   | -13.90   | 33.17    | -0.14      | -0.26      | -0.21              | -0.31     |
| EV Base     | 784,132   | 149,252  | 63,788   | 11,373   | 30,417   | 31,262,634 | 18,407,333 | 704,303.4          | 437,076.7 |
| New         | 778,415   | 147,066  | 62,395   | 9,624    | 41,141   | 31,227,944 | 18,378,133 | 703 <i>,</i> 455.8 | 436,241   |
| change %    | -0.73     | -1.46    | -2.18    | -15.39   | 35.26    | -0.11      | -0.16      | -0.12              | -0.19     |

- model scenarios." Transportation Research C 40 (2014): 1-13.
- (ACC), 2015. IEEE, 2015.




| ison | of resulted trips and network statistics of travel model |
|------|----------------------------------------------------------|
|      | between base case and the modified case                  |

# References

• Fagnant, Daniel and Kara Kockelman. "The travel and environmental implication of shared autonomous vehicles using agent based

• Spieser, Kevin, et al. "Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: A case study in Singapore." Road Vehicle Automation. Springer International Publishing, 2014. 229-245.

• Zhang, Rick, et al. "Models, algorithms, and evaluation for autonomous mobility-on-demand systems." American Control Conference

