

PLUG-IN HYBRID & ELECTRIC VEHICLE RESEARCH CENTER

of the Institute of Transportation Studies

DC FAST Charging: Who? When? Why?

STEPS Fall 2017 Symposium

Gil Tal gtal@ucdavis.edu

Wei Ji weiji@ucdavis.edu

DC Fast Motivations and Modeling Approaches

Motivations:

- Long trips / corridor charging
- MUD and others without home charging
- Incidental

Modeling Approach:

- Housing Density
- Corridors long trips
- Coverage

Corridor Coverage model

Charge Window Illustration

Figure 12. Interstate corridor network (thick red lines) considered in this analysis (70-mile radius red buffer approximates areas that would be served by the proposed DCFC network). Included for reference: yellow polygons represent cities, purple points represent towns, and thin black lines represent the national highway system.

(Satellite imagery credit: © 2017 Google, Map Data © 2017 Tele Atlas)

Wood et al. 2017

UCDAVIS

PLUG-IN HYBRID & ELECTRIC VEHICLE RESEARCH CENTER

of the Institute of Transportation Studies

The charging story 2017

Home >>>work>>>Public

How often do PEV drivers charge?

Charging event per week

Home Charging 2013-2017

Nissan LEAF Level 2 home Charging 60%

■ No Home Charging

L2

2017 Survey

Nissan LEAF Level 2 home Charging⁶ 42%

About half have workplace charging, but is it congested?

Who is using DC Fast?

No Yes

How often do drivers use DC fast?

- About 60% not using DCFC at all
- Many users did less than 2 events after signing for a provider
- 10-15% are "regular users" N>2

		Mean		<u>Median</u>	
Make model	N	Free	Paid	Free	Paid
BMW i3	473	21	24	6	14
CHE SPARK	251		27		16
KIA SOUL	284		35		19
NISSAN LEAF	7716	29	36	15	19
VW Golf	217		33	0	19

Days between charging events for N>2

Most usage happens near home

BEVs and Long Road Trips: It's not about miles per day

- The longest road trip per year takes more then 5 days over 700 miles and in half the trips have more than 2 passengers in the car
- BEV households use other cars for the ^{12 months:}
 task
- Bigger vehicles
- AWD vehicles
- Rentals
- Or a Tesla if they have one.

is below to indicate the route your household took on its longe 12 months:

UCDAVIS

PLUG-IN HYBRID & ELECTRIC VEHICLE RESEARCH CENTER

of the Institute of Transportation Studies

Modeling DCFC

UC Davis EV Toolbox Modules

- Market tool (PEV owners home location by vehicle type)
- Workplace tool (PEV owners commute pattern and the derived demand for Charging)
- Corridor tool (estimating the demand for DC fast charging from long trips)
- Shared mobility (Adding shared mobility demand to home and work modules)
- Demand output (combined demand by location in terms of kwh and charging events)
- Charge Cost (estimating demand charges and per kwh cost per location)

Demand is a combination of all 3 sources of demand (corridor, home and work)

Graduated Demand Allocation. Potential Demand Drops Gradually with Distance with different sensitivity for home and work replacement

Demand Scenario: 2025 with Low Corr. Demand for BEV 80. 1.5 Million vehicles.

Nobody goes there anymore. It's too crowded

- DCFC is being used mostly within the vehicle range
 - Not expected to change
 - Pricing has a major impact
- We don't know who is not using the chargers
 - But we know it's not <u>dependable</u>
- Multi-Use Chargers are the best way to get higher utilization rate
- Don't yet know the impact of shared mobility

Coverage first or Dependable first?

- Can you trust the network?
 - Coverage
 - Technical Reliability
 - Congestion

Planning options:

- 1. Clustering vs coverage
- 2. Redundancy
- 3. Paid vs "all you can eat"
- 4. Consolidated report system (and reservations) in apps

Gil Tal gtal@ucdavis.edu

Thank you

PLUG-IN HYBRID & ELECTRIC VEHICLE RESEARCH CENTER

of the Institute of Transportation Studies

