Infrastructure Planning for Medium- and Heavy-Duty Fuel Cell Vehicles in California **Hydrogen Demand and Refueling**

Guozhen Li and Joan Ogden

Institute of Transportation Studies, UC Davis

2017-12-7 <mark>STEPS Fall</mark> 2017 Symposium

UCDAVIS SUSTAINABLE TRANSPOR

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS An Institute of Transportation Studies Program

We Built a Model

- To understand infrastructure planning questions for MD/HD FCVs
- Local FCVs
- Population
- Location
- H2 Demand
- Refueling Station Location & Size
- Long-haul FCVs
- Truck Route Network
- Refueling Station Location & Size

Two Markets

Local

- Package delivery trucks
- Drayage trucks
- Transit buses

Long-haul

HD tractors

Photo credit to: Nikola Motor

UCDAVIS

Photo credit to: Toyota

UCDAVIS

- H2 Demand
 - Hub (location)

 - - Population

Fleets

Local FCVs

Location

Size

Refueling Stations

Local FCVs: How Many & Where

FCV population target

- California targets^{*} 100,000 zero-emission freight vehicles by 2030
- We assume 40K local FCVs by 2030

FCV fleets & hubs

 Ports, airports, package delivery centers, bus yards, industrial parks (266 hubs)

Potential FCV Fleet Hubs

PACKAGE DELIVERY CENTER
 INDUSTRIAL PARK

BUS YARD AIRPORT PORT

*: Brown, E. G. (2016). California Sustainable Freight Action Plan.

Map based on Lon and Lat. Color shows details about Hub.Type. Size shows details about Daily.kgH2. The view is filtered on Daily.kgH2, which includes values greater than or equal to 50.

Long-Haul FCVs

- Truck Route Network
- Simplify California's truck route network
- Identify key trips

Refueling Network

- Refueling station locations
- Refueling station size estimates

Long-Haul FCVs: Trips

- We choose 380 trips between California's major metropolitan areas
- Every trip takes the shortest path on our simplified truck route network
- We want all trips to be refuelable

Long-Haul FCVs: Optimal Station Locations

- Assume limited FCV range of 150 miles
- Refuel all 380 trips
 (on any trip, an FCV is ensured to have a place to refuel before tank runs empty)
- Use least number of stations
- → Model as an integer programming problem

subject to

 $\min \sum_{i=1}^{N} x_i$

1

 $\sum_{x_j \in F_{t,j,R}} x_j \ge 1 \quad \forall t \in T, \forall i \in Q_t$

2

where

N = total number of nodes/candidate sites

 $x_i \in \{0,1\}$ are decision variables, $x_i = 1$ when node i is chosen as a refueling station location, and $x_i = 0$ when otherwise.

T = set of all trips

 $Q_t = \text{set of all nodes on trip } t$

R = range of FCVs (maximum distance an FCV can travel after a full refuel)

 $F_{t,i,R}$ = set of all nodes that can provide fuel for a vehicle with range R to travel to node i on trip t, without refueling in the middle

Long-Haul FCVs: Refueling Locations

- 14 refueling locations can cover the whole network
- Big city stations + connector stations in rural areas

Next Steps

- Integrate local and long-haul networks
- Include station cost in optimization
- Sensitivity analysis

Acknowledgements Thank you! Dr. Andrew Burke (UC Davis) for FCV fuel efficiency simulation data Mr. Michael Britt (UPS) for sharing information about the fuel cell truck test program at UPS Mr. Michael Fries for truck daily mileage data alifornia Nevada

UCDAVIS

Supporting Slides

Local FCVs: How Many & Where

- For each analysis year (2018-2030), we assign the statewide new FCV population across the 200+ fleets
- Priorities are given to
- "Seed" fleets in their "seed years"
- Fleets already operating FCVs
- Fleets near other FCV fleets

Local FCVs: New Population

Local FCVs: Vehicle Stock

Local FCVs: Fleets & Hubs data

- We collected a dataset of 266 potential FCV fleets/hubs
- Ports (9)
- Airports (12)
- Package delivery centers (134)
- Bus yards (42)
- Industrial parks (69)
- each hub (multiple fleets sharing a hub is also supported) For now we assume only 1 fleet at

Fleets data snippet				
leet.name	base.hub	FCET_type	Seed_year	Fleet_size_cap
Port Drayage Trucks at Port Oakland	Port Oakland	HD Port Drayage		14000
Port Drayage Trucks at Port Long Beach	Port Long Beach	HD Port Drayage	2019	14000
Port Drayage Trucks at Port Los Angeles	Port Los Angeles	HD Port Drayage	2020	14000
Port Drayage Trucks at Port San Diego	Port San Diego	HD Port Drayage		14000
Port Drayage Trucks at Port Redwood City	Port Redwood City	HD Port Drayage		14000
Port Drayage Trucks at Port San Francisco	Port San Francisco	HD Port Drayage		14000
Port Drayage Trucks at Port Richmond	Port Richmond	HD Port Drayage		14000
Port Drayage Trucks at Port Hueneme	Port Hueneme	HD Port Drayage		14000
Port Drayage Trucks at Port Stockton	Port Stockton	HD Port Drayage		14000
Trucks at Bob Hope (Burbank) Airport (BUR)	Bob Hope (Burbank) Airport (BUR	HD Other Drayage		100
Frucks at Fresno Yosemite International Airp	Fresno Yosemite International Air	HD Other Drayage		100
Trucks at John Wayne / Orange County Airpo	John Wayne / Orange County Air	HD Other Drayage		100
Frucks at Long Beach Municipal Airport (LGB	Long Beach Municipal Airport (LG	HD Other Drayage		100
Trucks at Los Angeles International Airport (I	Los Angeles International Airport	HD Other Drayage	2025	100
Frucks at Los Angeles Ontario International A	Los Angeles Ontario International	HD Other Drayage		100

'Hubs data snippet

ub.name	hub.type	full.address	lon	lat	zip
Port Oakland	Port	1 Market St, Oakland, CA 94607	-122.2854	37.796529	94607
³ ort Long Beach	Port	Port of Long Beach, Long Beach, CA 90802, USA	-118.216458	33.754185	90802
ort Los Angeles	Port	Port of Los Angeles, Los Angeles, CA, USA	-118.260246	33.738009	90731
³ ort San Diego	Port	687 Switzer Street, San Diego, CA 92101-7810	-117.15652	32.698997	92101
Port Redwood City	Port	675 Seaport Blvd, Redwood City, CA 94063, USA	-122.209147	37.507674	94063
Port San Francisco	Port	Pier 80, San Francisco, CA	-122.379575	37.750239	94124
Port Richmond	Port	1411 Harbour Way S, Richmond, CA 94804, USA	-122.360593	37.913141	94804
ort Hueneme	Port	333 Ponoma St, Port Hueneme, CA 93041, USA	-119.200472	34.150879	93041
Port Stockton	Port	2201 W Washington St, Stockton, CA 95203, USA	-121.322365	37.945988	95203
3ob Hope (Burbank) Airport (BUR)	Airport	4699 W Empire Ave, Burbank, CA 91505, USA	-118.361026	34.19468	91505
resno Yosemite International Airport	Airport	5175 East Clinton Way, Fresno, CA 93727	-119.720755	36.767063	93727
ohn Wayne / Orange County Airport (Airport	3000 E Airway Ave, Costa Mesa, CA 92626	-117.875112	33.671815	92626
ong Beach Municipal Airport (LGB)	Airport	4600 E Spring St, Long Beach, CA 90808	-118.140487	33.812015	80806
			5		-

Local FCVs: Statewide Target

- State plan targets 100K zeroemission freight vehicles by 2030
- We assume ½ of these ZEVs are FCVs, that is 50K
- We assume 80% FCVs are locally operated
- That leads to the target of 40K local FCVs by 2030

Local FCVs: New Vehicle Assignment

- Every year each fleet is assigned a score based on
- If it is "seed" year of that fleet: 10 pt
- If it already has FCVs: 8 pt
- If it shares a hub location with other FCV fleet(s): 5 pt
- If it is close to another FCV hub: 5-0.25*driving time to closest FCV hub in minutes (negative values are set to 0)
- Final score is the highest of the above items
- A high-score fleet takes how ever many FCVs of their desired type as they want, and the next high-score fleet comes in to do the same, until all available new FCV quota runs out.

Local FCVs: Vehicle Survival Curve

 We adopt the survival curve from CA VISION database

Long-Haul FCVs: The Route Network

- We hand-picked important points on CA's truck route network to be our network nodes
- Intersections of major highways
- Ports and airports
- Existing truck service facilities
- The arcs represent actual roadway links between points
- Arc length are driving distance measured with Google Maps API

Long-Haul FCVs: The Long-Haul Trips

- Trips are between CA's major metropolitan areas:
- Los Angeles area
- San Diego area
- Fresno area
- San Francisco area
- Sacramento area
- Redding/Red Bluff area
- 20 nodes are OD nodes
- 380 trips
- All trips take shortest distance path between OD

Long-Haul FCVs: Station Placement Algorithm

Ë

2

t, without refueling in the middle $F_{t,i,R}$ = set of all nodes that can provide fuel for a vehicle with range R to travel to node i on trip

Long-Haul FCVs: Station Placement Algorithm

How to make sure all trips are refuelable?

- Make sure all node all trips can be reached without running out of fuel
- Each node on each trip leads to a linear constraint

Our Model Is Highly Customizable

You can customize

- FCV population growth assumptions
- FCV fleets and hubs. A hub can be shared by multiple fleets.
- FCVs' hydrogen VMT and fuel efficiencies
- Station coverage criteria (e.g. 5, 10, 15 minutes)
- Long-haul route network & candidate station sites
- FCV trips: ODs, paths
- FCV range limits

Our Model Is Only As Good As Its Input Data

We are looking for good data on...

- MD/HD fleet/operator info: location, fleet size, operation routes, etc.
- FCV specs: fuel efficiency, range, refueling speed, etc.
- Freight traffic data: ODs, routing, payload, refueling behavior
- H2 station costs (as alternative optimization targets)

Thank you!

Vevada

Guozhen Li

ligz@ucdavis.edu | guozhen.li/linkedin

PhD Candidate, Transportation Technology and Policy

Master's Student, Computer Science

University of California, Davis

Research/Work Interests:

- Transportation & alternative fuels
- Data analytics / data science / data visualization
- Optimization
- Geospatial analysis