Revised Transition Scenarios for California

Marshall Miller, Andrew Burke, Lew Fulton, Patric Ouellette, Qian Wang, Christopher Yang,

STEPS Symposium
December 7, 2017

NextSTEPS (Sustainable Transportation Energy Pathways)
Transition Scenarios Model

• Develop scenarios for transportation to analyze future vehicle market shares, fuel usage, emissions and costs
 • Analyze 2010-2050, CA based
 • Presently LDVs and trucks
 • Model includes
 – Fleet stock turnover
 – Vehicle and fuel costs
 – Vehicle fuel economies
 – GHG emissions
 – Technology types (gasoline, diesel, hybrids, NG, BEV, fuel cell)
 – Fuels types (diesel, gasoline, biofuels, NG, electricity, hydrogen)
 • Focus on the cost and emissions impacts of a transition to decarbonized transportation system
Vehicle Market Penetrations Scenarios (LDVs)

• Scenarios
 – Specify percentage of new vehicle sales for each technology for each vehicle type every year through 2050
 – Created as “What if?” inputs to model to analyze potential effects of new vehicle technologies entering market

• LDV business as usual (BAU)
 – CAFÉ standards through 2025
 – ZEV standards through 2020, modest increases through 2050

• LDV ZEV
 – Phase out conventional vehicles by 2040
 – Modest HEV by 2050 (4-6%)
 – PHEV, ZEV, Fuel cell make up remainder
 – Ethanol blend in gasoline 41% in 2050
Vehicle Market Penetrations Scenarios (Trucks)

- **BAU**
 - Meet phase I and phase II standards for fuel economy
 - No advanced technologies (BEV, fuel cell)
 - Modest diesel biofuels (6%)

- **High Efficiency**
 - Increased fuel efficiency for long haul trucks
 - Higher penetration of HEVs
 - No advanced technologies (BEV, fuel cell)

- **ZEV**
 - Aggressive fleet penetration for fuel cell and BEVs (~50% market share by 2050)

- **ZEV + Biofuels**
 - Fleet penetration roughly half of ZEV scenario for fuel cell and BEVs
 - Diesel biofuels contribution grows to 50% by 2050
Fuel CI (gCO2e/gge) for ZEV scenarios in 2050:
Electricity ~ 130-500, H2 ~ 1650-1800, Diesel blend ~ 12,700
Fuel CI (gCO2e/gge) for ZEV scenarios in 2050:
Electricity ~ 130-500, H2 ~ 1650-1800
Diesel biofuels blend ~ 12700, Ethanol blend ~ 8600
GHG Emissions Reductions by Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>LDVs</th>
<th>Trucks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>34</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>High Efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEV</td>
<td>80</td>
<td>50</td>
<td>71</td>
</tr>
<tr>
<td>ZEV + Biofuels</td>
<td></td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>
Fuel Cost 2050: Diesel blend = $4.25/gge, H2 = $6.30 - $7.75/gge
Scenario Cost Comparison (Trucks + LDVs)

Fuel Cost 2050: Diesel blend = $4.25/gge, Gasoline blend = $2.85/gge
H2 = $6.25 - $7.75/gge
Fuel Cost 2050: Diesel blend = $3.03/gge, Gasoline blend = $2.85/gge
H2 = $6.25 - $7.75/gge
Rough Estimate of Cost per GHG tonne reduced

- Calculate additional Cost of ZEV scenario
 - Capital cost in year of purchase
 - Fuel costs from (2010 – 2050)

<table>
<thead>
<tr>
<th>Diesel blend price ($/gge)</th>
<th>GHG Reductions (billion tonnes CO2e)</th>
<th>Additional Cost for ZEV scenario (billion $)</th>
<th>Mitigation Cost ($/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>2</td>
<td>1.7</td>
<td>0.83</td>
</tr>
<tr>
<td>3.03</td>
<td>2</td>
<td>32.4</td>
<td>16.2</td>
</tr>
</tbody>
</table>
Thank You