

Sustainable Transportation Energy Pathways (STEPS)

Research Ideas: Transportation Fuel Infrastructure Vulnerability and Resiliency to Climate Change

Dec. 7, 2017

Joan Ogden Yueyue Fan Amy Jaffe

www.steps.ucdavis.edu

Integrated Assessment Modeling => Elec. Drive, Low-C Fuels Play Major Role in 2° Scenario

UC Source: International Energy Agency Energy Technology Perspectives 2012 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Infrastructure Implications of 2° scenario

TRANSPORTATION TAPS INTO EVOLVING ELECTRIC GRID (w/increasing % variable renewable power)

• EV charging, power-to-gas, power-to-liquids

NEW FUELS =>

- Adapt/use existing infrastructure, (Drop-in biofuels? Blend H2 w/ NG? Smart elec. grid)
- New dedicated infrastructures

NEW INFRASTRUCTURE FOR CARBON MANAGEMENT

- Carbon Capture (Chemical Process or Atmospheric)
- CCS (pipelines and storage)

Northern California Energy Infrastructure

ADAPTATION TO IMPACTS OF CLIMATE CHANGE
 EVOLUTION TOWARD LOW CARBON ENERGY SUPPLY

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

CA Climate Change Projections

- Air and Water Temperature Rise
- Decreasing water availability
- Increasing intensity of storms, sea level rise, storm surge
- Increasing intensity and frequency of flooding
- More frequent and severe wildfires
- Changes in precipitation timing and decreasing snowpack

=> potential impacts on energy system

- Less efficient electric gen and T&D d.t. high temperature
- Wildfire damage
- Flood damage
- Storm damage
- Increased risk of physical damage and disruption to power and fuel facilities
- Disruption of rail and barge transport of crude oil, petroleum products
- Increased summer A/C and NG demand; less heat in winter

IMPACTS ARE GEOGRAPHICALLY SPECIFIC

- Conduct Regional Case Studies
 - Develop spatial/time scenarios for evolution of fuel supply system
 - Consider Adaptation + transition to clean energy
- Identify key vulnerabilities for energy infrastructure
- Optimize systems for resiliency
 - Operation of existing fuel systems
 - Buildout of new systems for low carbon fuel supply
- Capture risks, dynamics caused by evolving infrastructure and climate, and system interdependence.

extras

ELEC. GEN.	CA Climate Projection	Potential Risk/Impact
Thermo- electric power plants (NG, coal, geothermal, CSP, nuclear)	 Increasing air & water temp. Decreasing water availability Increasing intensity storms, sea level rise, storm surge Increasing intensity and frequency of flooding 	 Reduced plant efficiencies & available generation capacity increased risk of exceeding thermal discharge limits impacts on coal, NG, and nuclear fuel supply chains Increased risk of physical damage & disruption to power facilities
Hydropower	 Increasing temps & evap. loss Changes in precipitation timing and decreasing snowpack Increasing intensity and frequency of flooding 	 Reduction in available generation capacity & changes in operations Increased risk of physical damage and changes in operation
Solar	Increasing air temperaturesDecreasing water availability	 Reduction in potential peak generation capacity (PV and CSP)
Wind	Variability of wind patterns	Net impact generation uncertain
ELEC. T&D	 Increasing air temperatures More frequent and severe wildfires Increasing intensity of storms Increasing intensity, frequency of flooding 	 Reduction in transmission efficiency and available transmission capacity Increased risk of physical damage Substations subject to flooding

	CA Climate Change Projection	Potential Risk/Impact
FUELS		
<i>Natural Gas fuel processing, storage, pipelines</i>	 Decreasing water availability Increasing intensity of storm events, sea level rise, and storm surge Increasing intensity and frequency of flooding 	 Impacts on drilling and production Increased risk of physical damage and disruption to coastal facilities Increased risk of physical damage to inland facilities
Petroleum Production. Refineries, Transport	 Decreasing water availability Increasing intensity of storm events, sea level rise, and storm surge Reduction in river levels Increasing intensity and frequency of flooding 	 Impacts on drilling, production, and refining Increased risk of physical damage and disruption to coastal facilities Disruption of barge transport of crude oil, petroleum products Disruption of rail and barge transport of crude oil, petroleum products
Bio-refineries; Bioenergy	 Increasing air temperatures Extended growing season Decreasing water availability Sea level rise and increasing intensity and frequency of flooding 	 Increased irrigation demand; risk of crop damage from extreme heat events Increased biomass production Decreased biomass production Increased risk of crop damage

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Climate change Implications

ENERGY DEMAND

Electricity	Increased demand for summer A/C; reduction of	
	winter space heat demand; demand side	
	management and/or storage to match supply	
	and demand.	
Natural Gas	Reduction of winter space heat demand; more	
	NG needed by power plants to compensate for	
	lower efficiency at summer peak times.	
Transportation	Depends on mix of fuel/vehicle types in light and	
Fuel	heavy duty sectors, aviation, freight. Low Carbon	
	Futures require higher efficiency vehicles, lower	
	carbon fuels: Electricity, H2; biofuels; RNG	

