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Transition Models for Transport Decarbonization
e

* Presentation Goal:

— To explore the transition to a lower-carbon HDV sector, with
emphasis on vehicle efficiency, advanced technologies, and
alternative fuels

— To understand how different modeling approaches can help us
answer different questions about this transition

e Methods:

— Use different models of different types to explore the transition
from conventional HDV vehicles to low-carbon vehicles and fuels

 Truck Choice Model — Discrete choice simulation
 CA-TIMES - Energy system optimization model
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Truck Choice Model
1

* Researchers: Marshall Miller, Qian Wang, Lew Fulton
« Core model: Nested multinomial logit (NMNL) discrete choice model
« Brings in three important additional behavioral elements relative to
optimization (= diversity in tech. adoption)
— Consumer heterogeneity (i.e. segmentation)
— Variation in preferences (probability distribution)
— Adoption is driven by overall generalized cost

« Capital and operating costs (over planning horizon)

 Inclusion of non-monetary utility factors (besides costs)
— Environmental perception
— Uncertainty (Risk)
— Model Availability

— Vehicle Range Disutility due to lost driver
— Refueling Time time for finding stations

— Station Availability and fue|ing vehicle
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CA-TIMES Energx sttem Model

« Students: Kalai Ramea, Saleh Zakerinia
« Core model: Linear optimization (cost minimization) of investment and
operating costs of entire energy system from 2010-2050
e primary resources
» conversion technologies (fuels and electricity production)
» end-use technologies (vehicles, appliances)

— Minimize cost of building and operating energy system to meet demand
for energy services
» Capital Cost
» Operating costs (fuel use, maintenance)
* Incentives
« Carbon price/constraints
— Global decision-maker

— Constraints are critical to shaping technology adoption

» Carbon caps
« Policy constraints (CAFE, ZEV mandate, RPS)
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Attribute Choice Model Optimization Model

Focus of Analysis | Vehicle adoption behavior Energy system linkages — vehicle
adoption coupled with upstream
supply infrastructure and

resources

Representation of | Consumer heterogeneity — Global decision-maker - a single

decision-maker(s) | many individuals maximizing decision-maker designing the
utility system

Decision factors Utility, including non-monetary | Hybrid, primarily economic cost
factors factors (coupled with implications in

other sectors) with high discount
rates are used to approximate non-
monetary factors™

Results Probabilistic purchase behavior | Often see “winner-take-all”
behavior (one technology is the
lowest cost)

€ * We have included non-monetary factors in the
SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS decision-making for LDV purchases (COCHIN) c



Truck Choice Model Results
|

Scenarios: (L) BAU, (R) HDV ZEV mandate scenario (25% by 2050)

includes carbon tax ($150/tonne by 2050)
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CA-TIMES Results
|

Scenarios: (L) BAU, (R) Carbon cap (80% reduction by 2050)
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Truck Choice Analxsis

 |dentifying how to achieve a specific adoption target
— Target of 25% ZEV adoption in each truck category by 2050
— Carbon tax of $150/tonne CO2 (~$1.90/Diesel Gal) in 2050.

Long Haul Incentives Short Haul Incentives

350 3.5 160

$300k/Veh 140 140k/veh

[y
0o

[y
(o3}

300

=
iN

250

=
N

Total ZEV Sales (000 vehicles/yr)

200

=

150

o ©
o ©

Average Incentive $K/veh)
Total Incentive Amount (SM/yr)

100

o

Average Incentive $K/veh)
Total Incentive Amount (SM/yr)
i

otal ZEV Sales (000 vehicles/yr)

w1
o

$50k/veh *° " 20 $0/veh o

2030 2035 2040 2045 2050 2030 2035 2040 2045 2050

— LH incentives: cost total $2.8B for 29k extra ZEVs = $95k/veh

— SH incentives: cost total $0.2B for 10k extra ZEVs = $18k/veh

— Economic costs diff. (capital and fuel) vs BAU is $820 million for LH & SH
« <$20,000 per vehicle (lifetime cost)

« Difference of about $2.2 Billion used to overcome non-monetary utility
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CA-TIMES Transportation Decarbonization
.

 CA-TIMES GHG reduction scenario is driven primarily by the goal of
meeting carbon reduction goal of 80% by 2050

— Requires decarbonization across supply and end-use sectors
— Non-energy emissions are challenging to reduce

— Transport > 90% reduction

Energy System Cost and Emissions California Emissions
(2010-2050) 500

Cost 1 vs BAU: $137B
Emissions | vs BAU: 2804 MMT

$49/tonne CO,e abatement

Relatively low average cost of
emissions reduction

2010 2015 2020 2025 2030 2035 2040 2045 2050

But this only includes economic

costs and ignores other factors
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Discussion of modeling insights

 We have two models that have very different costs results:

— Choice model - Very high levels of subsidies are required for
carbon abatement, even though extra capital and fuel costs are
significantly lower

— Energy system model — Modest costs associated with carbon
reductions across all sectors

« Carbon tax/price can have two meanings:

— a calculation of the estimated extra economic costs associated
with policies (may not include non-monetary factors)

— as an policy instrument that can help to change behavior in the
adoption of low-carbon technologies and fuels (should account
for non-monetary factors)

« Highlights a tension in modeling between results that are societally
optimal and behaviorally realistic

UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS 10




Conclusions and Takeawaxs

* In either BAU scenario, we don’t see adoption of ZEVs and low-
carbon technologies

e Choice Model Results

« A ZEV mandate can achieve ZEV adoption but requires
significant additional incentives (subsidies and carbon tax in our

approach)
— CA-TIMES Results
« Decarbonization of the energy system is a huge undertaking
— Requires significant adoption of ZEVs in transportation

— Fuel cell vehicles are chosen in the long-haul sector while
FCVs and BEVs are chosen in short-haul

« Cost of emissions reduction is relatively modest mainly due to
cost savings from efficiency (highlighting the efficiency gap)
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Conclusions and Takeawaxs 522

« Adding behavioral elements to a model makes the results more
relevant to the real-world

— These real-world, behavioral elements are barriers to adoption
» Capital and fuel costs
» Refueling/charging inconvenience and costs
* Model availability and risk/uncertainty
* Technology readiness
— The goal is to understand what is needed to drive adoption
* Monetary incentives (subsidies, carbon tax)
* Infrastructure deployment
» Technology maturation and perception
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