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Overview

* Motivation

* Reviewing Life Cycle GHG emissions from EVs
« Shared, Automated, Long-Range EVs?

* Results

« Implications/Conclusions
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Tallpipes
used to be a good proxy

« Most emissions Greenhouse Gas Emissions from Conventional ICE Vehicles

from conventional
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vehicles occurred g ~65%
during operation L;;
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technology are changing
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Patterns of vehicle ownership
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and use could also be changing

Most
commuters
drive by

themselves

American Community Survey, 2013
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A new option is emerging:
Lyft is helping shift from ownership
to ridership

M
111y uberPOOL

On-demand

Integrated
with other
modes

Automated

Pooled
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Could LCA be a framework
for regulation of vehicles and fuels?

CURRENT
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In this study, for both 16-year and 11-

LCA and G H G M |t|gat|on year life, the heavier vehicle had

lower life cycle emissions.

-20,000 0 20,000 40,000 60,000 kgCO2e

 Alife cycle perspective is
ey y p . p - I Production
critical to avoid e e Bl
leakage/unintended : I- End-of-Life
Aluminum/Mg
consequences

L . Production

= 11-year Use Phase

* New technologies can increase
efficiency, but not reduce oL
emissions on a life cycle basis L I-

-20,000 0 20,000 40,000 60,000 kg CO2e

Kendall & Price. "Incorporating time-corrected life cycle greenhouse

gas emissions in vehicle regulations." DOI: 10.1021/es203098j
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LCA is a method for W
characterizing, = — - - - - - = - - it ttalaing.
quantifying, and Y .. T |
i . : Material Manufacturing
I nte rp rEtI n g | AIC\AqaLEIeSI;]t?Cl)n Processing or Construction |
environmental flows for : l
. Recycle |
a product or service | (T = Transport \ —
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‘ Waste and Pollution ‘

from a “cradle-to-grave”
perspective



Vehicle Battery

Study V.T_;:;:e Batte;{(v(\:’:;)acity Production Production Ve r(l;c::e O(Zz;akrrant)i on
(g CO2e/km) (g CO2e/km)
Samaras and Meisterling (2008) PHEV 20 i o oi E E i
Notter et al. (2010) BEV 34 ° i ° i i ‘i
Majeau-Bettez et al. (2011) BEV 24 qi E ° E E
Dunn et al. (2012) BEV 28 o o |
Hawkins et al. (2013) BEV 24 i ° i ° i i
Ellingsen et al. (2014) BEV 27 i i oi i
Zivin et al. (2014) BEV 24 E E E E °

Miotti et al. (2015) BEV 19 - 60 . °« | ¢
Tamayao et al. (2015) BEV 24 i i i Eo
Kim et al. (2016) BEV 24 io io i i

Archsmith et al. (2016) BEV 28 E ° ° E E Eo

24 29 34 0 12 24 40 120 200
Average Convetional ICE Vehicle ICEV 33.2 ] 191.5

(N=11 Studies)



m Other Models (16-20 kKVWh)
Other Models (26-30 kKVWh)

m MNissan LEAF (40 K\Wh)

m Tesla Model 3 (75 kKVWh)

m Tesla Model X (100 KVWh)

m Other Models (21-25 kVWh)
Other Models (31-35 kKVWh)
m Chevrolet Bolt EV (60 kKVWh)
Tesla Model S (100 kKWh)

o Sales-weighted battery capacity 30

74 kWh/vehicle
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Energy Use and GHGs per Mile for

Use-phase
US Passenger Cars and Vans

SAVs with high
utilization could realize upg  9COZper  Avg. g CO2 per
800,000 miles over 12 vehicle mile Passengers person mile
years (~5 x current 1980 Passenger Car 20 485 1.6 303
2015 Passenger Car 28 325 15 217
14 650 2 325
170

average mileage for a
2.5

personal vehicle)
1980 Passenger Van
2015 Passenger Van 22 425
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Fagnant, D. J., Kockelman, K. M., & Bansal, P. (2015). Operations of shared

U h autonomous vehicle fleet for austin, texas, market. Transportation Research
Se-p ase Record: Journal of the Transportation Research Board, (2536), 98-106.
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Figure 4: Daily Travel Distance per SAV in Austin Network-Based Setting
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Scenarios Considered

Leaf (2012) Compact Sedan SUV
Battery (kWh) 24 60 100 100

2017
Range (miles) 84 209 299 254
Battery (kWh) 60 100 100

2025
Range (miles) 214 318 282
2025 Battery (kWh) 100 125 175
(Long Range) Range (miles) 312 363 443



Annual
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Lifetime Vehicle Miles (Thousands)
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Electricity
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Life-cycle Emissions per Mile

400
Use (12 years - CAMX)
300 - ]
® Battery Production
= Battery Materials
200 -

End of Life

¥ Glider Assembly

B B
. . ! ! I ! ! E— Body and Powertrain
_— ! ! L L Materials

GHG Emissions (g CO2e/mile)

2017 Leaf Bolt Tesla Tesla 2025 2025 2025 2025 LR 2025 LR 2025 LR
ICE LDV (2012) S100 X100 Compact Sedan SUV Compact Sedan  SUV




Life-cycle Emissions per Mile
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400
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SAV ICE

2025 LR- 2025 LR-Sedan 2025 LR-SUV
Compact

Average Personal Mileage

2025 LR- 2025 LR-Sedan 2025 LR-SUV
Compact

Shared Automated Vehicle (SAV)

Body and Powertrain Materials ® Glider Assembly  End of Life ® Battery Materials ®Cell Assembly and Production © Use (12 years)




Lifetime Battery Cycles
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4000
Leaf (2012)
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High-mileage SAVs

« SAVs with high utilization could realize 800,000 miles over 12
years (~5 x current average mileage for a personal vehicle)

Car SUvV Car
2.0 2.0 3.3 3.3
1.4 1.1

Chassis Replacement
Battery Replacements (2000 cycles @ 80%DOD) 0.0 0.0

« Battery replacement is a concern
SAV Low SAV Low SAV High SAV High
SuUV




Moving Beyond the Tailpipe

* Bigger batteries, more impacts, longer service lifetimes

* Potential for emissions creep from changing vehicle
design and model choices

* EVs with long range could meet daily driving required for
SAV fleet with single charge event per day
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Could LCA be a framework
for regulation of vehicles and fuels?
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