

Sustainable Freight

Contending with Increasing Freight Demand

Miguel Jaller

Anmol Pahwa

Leticia Pineda

Hanjiro Ambrose

Yasar Guldas

System of Interest

The freight system is multi-modal But...

The closer we are to the consumer...

Trucks dominate freight traffic

2 differences:

- Generation of cargo
- Generation of freight trips

In addition to commercial demand, residences and individuals generate freight traffic

Residential Demand is Growing

Online shopping market share has grown almost 30% since 2009

Today...

• 55% of the population shop online

During any given day...

- ~40% of the population shops
- 2-3% shop online

Retail and e-commerce quarterly sales 1993-2017

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

What is the Problem?

Basically...more freight traffic and the associated consequences...

This rapid increase:

Generated by the market, and accentuated by consumers

Disrupted the freight and logistics industries

- Changes in the location of freight facilities (e.g., warehouses)
- Changes in the location and concentration of demand
- Changes in the retail landscape
- Changes in inventory practices and distribution services
- Put the system in steroids...

Disrupted shopping practices

- Changes in the shopping process (search, purchase, transport)
- Tradeoff between individual's travel and deliveries

□Increased urban freight traffic

- More congestion
- More emissions
- More energy consumed
- More conflicts
- More problems...

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

What are we doing?

AS SIMPLE AS THE 1-2-3 APPROACH

- 1. SOLVING RECURRENT PROBLEMS FROM THE PAST...
- 2. CONTENDING WITH THE NEW ISSUES...
- 3. ANTICIPATING THE FUTURE AND TRYING TO MITIGATE THE IMPACTS...

Understanding and Modeling Freight Practices

What is/are the:

- cargo?
- origins and destinations?
- Modes and vehicles?
- volumes?
- traffic?
- routes?
- costs?
- impacts?

This requires approaching the problem along the continuum

Supply

Demand

Demand

Estimating Demand and Evaluating the Impacts

Focus on commercial deliveries and online shopping

- Behaviors
- Travel

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Research Methodology:

- 1. Estimated econometric models to determine the factors that affect shopping behavior using the American Time Use Survey (ATUS)
- 2. Evaluated complementarity or substitution effects between in-store and online shopping
- 3. Developed a behavioral-based shopping trip and urban delivery aggregate simulator
- 4. Estimated vehicle miles traveled and environmental emissions from shopping
- 5. Evaluated the impact of rush deliveries
- 6. Developed a breakeven analysis to compare in-store versus online shopping

Modeling Shopping Behaviors

Decisions about:

- Shopping or not?
- Shopping online or in-store?

Travel impacts:

- Complementarity effect
- Substitution effect
- Induced demand

- SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
- Heterogeneous shopping behaviors across different segments
- This effect is clearly different across two genders

Variable		Shop	In-store	Online
Gender	Female	+	-	+
Mobility	Difficulty in mobility	-		
Employment status	Unemployed	+		
Education Level	Secondary	+		
	Graduate	+		
Age group	Millennial	+		
	Generation X	+		
	Baby Boomers	+		
	Silent Generation	+		
Family Income	Low		-	+
	Lower Middle	+		+
	Median	+		+
	Middle Middle	+		+
	Upper Middle	+		
	High			+
Season	Fall		-	+
HH variables	Family Structure	-		
	A single male in the house, belonging to generation Z, with no mobility related difficulty,			
Control group	having no education, is not in the labor force, living under poverty level, from Midwest.			
	We observe this individual's shopping behavior during the summer.			

- Generalizing substitution or complementarity effects over the entire shopping behavior leads to aggregation bias
- The probability of shopping through one channel reduces when the individual had already shopped in the other

Evaluating the Environmental Impacts of Online Shopping

3 cases:

- All shopping in-store ("past")
- Omni-channel ("present")
- All online ("future?")

Different assumptions about shopping trips and delivery tours

Results for estimated tours of varying length and stops per tour substitution

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Implemented models in various cities

Parameters	Scenario	$\%\Delta$ w.	% Δ w.r.t. to SC in-store		
		FQC	MQC	TQC	
VMT	Omni Channel	0%	1%	1%	
	SC online	-92%	-88%	-81%	
CO (kg)	Omni Channel	0%	1%	1%	
	SC online	-91%	-88%	-80%	
NO _x (kg)	Omni Channel	6%	9%	15%	
	SC online	-16%	20%	90%	
CO_2 (Metric ton)	Omni Channel	2%	2%	4%	
-	SC online	-75%	-64%	-42%	
PM 10 (kg)	Omni Channel	3%	4%	6%	
	SC online	-62%	-46%	-14%	
PM 2.5 (kg)	Omni Channel	3%	4%	6%	
C	SC online	-62%	-46%	-14%	
SO _x (kg)	Omni Channel	2%	2%	4%	
	SC online	-75%	-64%	-43%	
F/M/TQC:	First/Median/Third Quartile Delivery Distance				

Rush Deliveries are not Sustainable

Faster deliveries reduce time windows...

Deconsolidating the last mile

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Supply

Dealing with the Supply Side

Working with fleets:

- Zero and near zero emission
- Improved routing
- Alternative distribution network
- Automation

Diesel vehicles dominate the market

In the meantime, we can...

- Design them better (e.g., drivetrain, powertrain)
- Drive them better (e.g., eco-driving, eco-routing)
- Use them better (e.g., right sizing)
- Manage how they perform (e.g., geo-fencing)

Or, we can...

- Replace them for zero emission vehicles
- Use them differently by changing our distribution networks
- Automate the system

Evaluating Zero Emission Vehicles for Last Mile Distribution

Using aggregated GPS data from FleetDNA

Distance

Cumulative distance curve for all delivery modes

Parcel deliveries conduct a large number of stops per tour along shorter routes

patterns

Total Cost of Ownership for Electric Trucks in Last Mile

Considering 3 scenarios based on Energy Efficiency Ratio (EER) assumptions

Consider:

- No financial incentives
- LCFS
- HVIP
- LCFS + HVIP

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Class 5 truck for parcel deliveries

Eco-Routing

Based on empirical data, estimated:

- Drive cycles using different CPs
- Estimated models for each family of CP's operating pattern
- Developed a routing optimization algorithm to find eco-routes
- Different driving modes

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

	SFC	EF CO2	EF CO	EF NOx
	[l/km]	[g/km]	[g/km]	[g/km]
SFC	0.295	698.96	30.89	3.73
СО	0.325	695.71	29.22	3.86
CO2	0.366	630.76	32.16	3.39
NOx	0.352	683.88	34.27	3.25

Total cost

 $= \beta_D D + \beta_T T + \beta_{FC} FC + \beta_{CO_2} CO_2 + \beta_{CO} CO + \beta_{NO_x} NO_x$

Where,

 $\beta_{D} = \$ 0.2665 \ per \ km^{a}$ $\beta_{T} = \$ 35 \ per \ hour^{a}$ $\beta_{FC} = \$ 1.051 \ per \ litre^{b}$ $\beta_{CO_{2}} = \$ 0.1966 \ per \ kg^{c}$ $\beta_{CO} = \$ 0.1763 \ per \ kg^{a}$ $\beta_{NO_{x}} = \$ 70.43 \ per \ kg^{a}$

Evaluating Alternative Distribution Configurations

3 main strategies for mixed or full zero emission vehicle fleets:

- Delivery tours (from warehouse to destination)
- Using consolidation centers with various forms of final distribution (e.g., small electric vehicles, freight bicycles)
- Using alternative delivery locations (e.g., store or other pickup/delivery points)

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Automation for the Long Haul

https://medium.com/@yuchenluo/decoding-the-myth-ofself-driving-cars-and-the-competition-in-u-s-e2da6beb695c

Automation in the Last Mile

http://beta.latimes.com/business/autos/la-fi-hy-robovan-mercedes-20160907-snap-story.html http://www.billbrucecommunications.com/article/jd-comlaunches-robot-delivery-service-at-chinese-universities/

Questions!

• Contact info: <u>mjaller@ucdavis.edu</u>