

Research Question

- PEV Usage Assumptions → surveys, travel diaries, GPS/OBD data from ICEVs
- PEV Usage From Experience → Highly granular GPS tracked data of all vehicles (PEVs and ICEVs) at a household (HH) level

What is the gap between our Assumptions on PEV Usage & PEV Usage From Experience?

Key Usage Metrics: HH level eVMT/Utility Factor(UF) , Energy Consumption, & GHGs

Research Implications

For Policymakers

- What are the factors that impact PEV usage?
 - HH size, car ownership, PEV range, access to chargers, pricing, typical driving needs
- Compare real world zero emission miles vs. All Electric Range(AER)
- How to increase eVMT & maximize GHG reduction benefits from PEVs?

For OEMs

- PHEV Fuel Economy, BEV energy consumption/mile, AER utilization
 - Calibrate or improve on-road GHG estimates from powertrain simulation models

Data

- Year-long sec by sec GPS tracked data from all the vehicles in the HH
- As of Nov. 2018, 325 HHs, 121 BEVs, 188 PHEVs, and 282 ICEs logged
 - Leaf(57), Bolt(15), Tesla(49); Volt(84), Prius PHEV(22), Prius Prime PHEV (13), Cmax/Fusion Energi PHEV (60), Pacifica(10)
- Scope of work: 121 BEVs, 30,000 vehicle days (driving, charging, or both)

Table 1 BEV Driving and Charging Data Summary (As of 8/1/2018)

BEV Type	N Vehicles	N Trips	N Charging Sessions
Leaf-24 kWh (L24)	30	41069	9382
Leaf-30 kWh (L30)	27	35517	6630
Bolt-60 kWh (B60)	15	14254	2948
ModelS_60-80 kWh (T60)	25	21353	5756
ModelS_80-100 kWh (T80)	24	21287	5426
All BEVs		30142	68% L2 12% DCFC

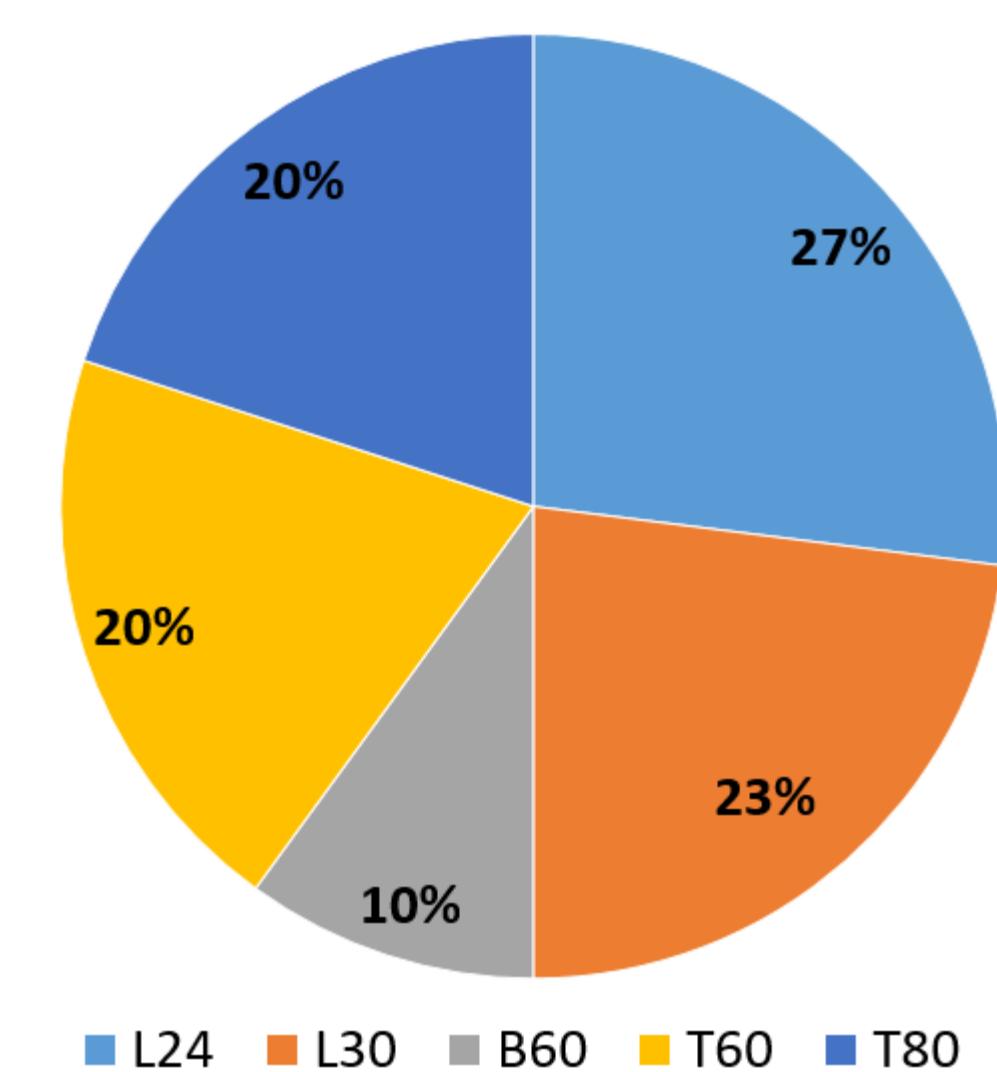


Figure 1 % of Vehicle Days by BEV Type

Methods

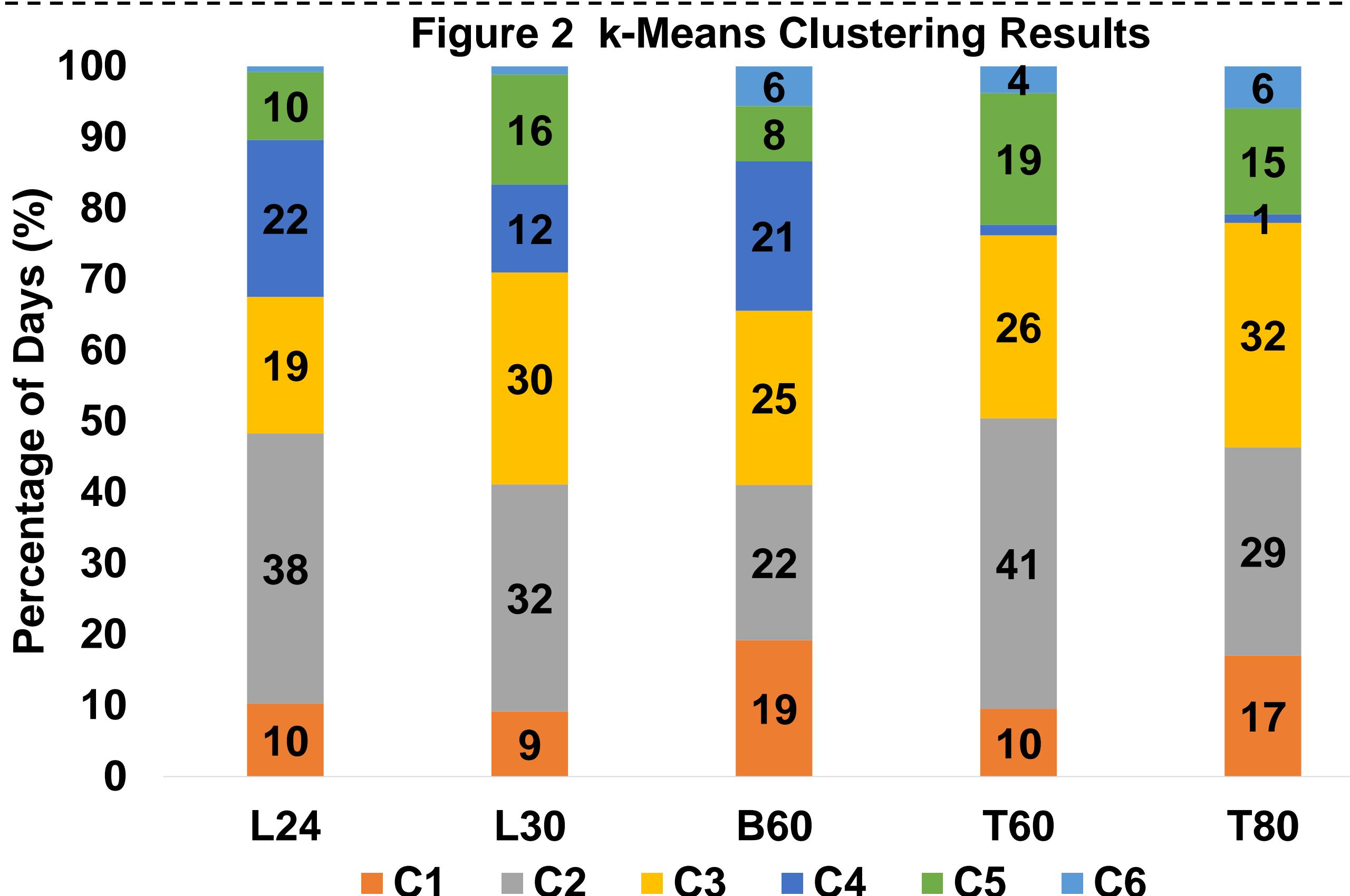
- ANOVA and non-parametric tests on three variants of daily driving distance
 - Average , habitual(HDD), and 95th percentile(95th Perc+) or more by type of day (weekday vs. weekend)
- k-Means clustering on daily driving and charging behavior
 - Reduce vehicle-days to 6 representative driving and charging profiles
 - Uncover similarities/dissimilarities between short-range BEVs (Leafs) and long-range BEVs (Bolts and ModelS)

Preliminary Results- Vehicle Level

Table 2 Pairwise Comparisons: Non-Parametric Test Results

BEV Type	BEV Type	Average	HDD	95 th Perc+	Average	HDD	95 th Perc+
p-val(Weekdays)						p-val(Weekends)	
T60	L24	0.024	0.176	<.0001	<.0001	0.1261	0.0004
T80	L24	0.024	0.917	<.0001	<.0001	0.0359	0.0005
T60	L30	0.028	0.073	<.0001	<.0001	0.0226	0.0051
T80	L30	0.043	0.291	<.0001	<.0001	0.0114	0.0051
T80	B60	0.394	1.000	0.001	0.1029	0.8512	0.7399
T60	B60	0.418	0.410	0.015	0.1988	0.5574	0.4507
L30	L24	0.994	0.497	0.077	0.6836	0.3708	0.1927
T80	T60	0.928	0.312	0.653	0.4777	0.6965	0.7566
L30	B60	0.306	0.446	0.227	0.0021	0.0109	0.002
L24	B60	0.206	0.588	0.007	0.0011	0.047	0.0002

✓ **ANOVA and Non-Parametric Test Results** : On weekdays, *no statistically significant differences in the most frequently driven distance* (habitual driving distance-HDD) across all BEVs (p-val 0.0708 at 95 signif. levels) & between all BEV types


✓ **k-means Clustering Results**:

- L30 *have highest share of DCFC* (2 years of free DCFC at EVgo stations)
- Bolts spend comparable % of days* in C3 and C4 as L24 (more level 1 charging and less than 25 miles driven)
- Not much difference between VMT* on days with *L1 only or L2 only charging*
- DCFC *enables long-distance travel* (100 miles or more) for ModelS (44% of days) the most, followed by Leafs (26% of days) , but only on 8% of days for Bolts

Table 3 Driving & Charging Clustering Means Summary

Cluster	Cluster Characteristics
C1	L1 & L2 charging; 1.3 sessions; 80 miles
C2	L2 dominant; 1.16 sessions; 24 miles
C3	Did not charge; 19 miles
C4	L1 dominant; 1.15 sessions; 25 miles
C5	L2 and DCFC; 1.8 sessions; 103 miles
C6	Did not charge; 75 miles

Figure 2 k-Means Clustering Results

Work In Progress

- Vehicle level analysis of PHEVs
 - Relationship between recharging frequency, VMT, MPGE, and utility factor
- HH level analysis: BEV/PHEV only, (1 or 2) ICE+ 1 BEV/PHEV, BEV+PHEV
- Explore HH level trip and daily travel substitution patterns
- Incorporate effects of activity by time of day (weekday vs. weekend) and season
- Density based spatial clustering to identify the most frequented O-D pair and charging location at a HH level