Can Truck Eco-routing Bridge the Gap in the Transition to ZEVs, and what it means for the local communities.

Anmol Pahwa
Miguel Jaller

May 12th, 2022
Motivation

• Freight is fundamental to economy, but heavy-duty trucks are heavy emitters of greenhouse gases and criteria pollutants.

• Transition to alternate fuel delivery vehicles has been slow.

• Immediate alternatives to address global climate change and local pollution impacts of urban freight.
Defining eco-routing

• Explicit eco-routing
 ◦ carrier explicitly accounts for externalities in its routing decisions

• Implicit eco-routing
 ◦ policy initiatives that encourage carriers to implicitly consider the impact of their emissions in their routing decisions.
 ◦ Geofencing and access control
Eco-routing vs. Conventional routing

• Eco-routing
 ▪ Explicit eco-routes
 ◦ Least Fuel-use Path (LFP)
 ◦ Least pollutant X Emissions Path (LEP-X)
 ▪ Implicit eco-routes
 ◦ Geofence Restricted Path (GRP)

• Conventional routing
 ▪ Shortest Path (SP)
 ▪ Fastest Path (FP)
 ▪ Least Cost Path (LCP)*

*Cost pertains to operational costs that includes maintenance cost, driver wages, and fuel costs.
Objectives

• **Private impacts**
 - Cost-benefits and tradeoffs of eco-routing for a carrier
 - Point-to-Point routing

• **System-wide impacts**
 - System-wide change in externalities due to network-wide freight eco-routing
 - Multi-class Traffic Assignment
Case Study

- Southern California Association of Governments (SCAG) region
 - Port of LA (POLA)
 - LAX airport
 - Freight Terminals at San Bernardino
- Freight sector
 - 20% of the workforce
 - 16% of SCAG’s GDP

Figure 1. Southern California Association of Governments (SCAG) region
Case Study

- Fuel consumption
- Greenhouse Gases CH₄, CO₂, ROG
- Criteria pollutants CO, NOₓ, PM
- Vehicle Class Heavy-Duty Trucks (HDT) Light-Duty Automobile (LDA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel consumption (FC) (litre/hr)</td>
<td>FC $1.051/litre a</td>
</tr>
<tr>
<td>Green-House Gases (GHG) (kg/hr)</td>
<td>CH₄ $1.781/kg b CO₂ $0.068/kg b ROG $4.925/kg c</td>
</tr>
<tr>
<td>Criteria Pollutants (CP) (kg/hr)</td>
<td>CO $0.199/kg c NOₓ $79.28/kg c PM $649.2/kg c</td>
</tr>
</tbody>
</table>

Table 1. Fuel and emission

Figure 4. CO₂ and NOₓ emission rates for Light-Duty Automobiles and Heavy-Duty Trucks
Case Study

Disadvantaged communities

- California Communities Environmental Health Screening Tool
- California Office of Environmental Health Hazard Assessment, 2017

Figure 2. Top 10%ile CalEnviroScreen Score Census Tracts

Figure 3. South-East LA (SELA)
Explicit eco-routing

Private impacts

• Eco-routes render significant reduction in emissions (up to 5%) but at increased cost to the carrier (also by 5% at worst).

• Benefits of reduced exposure are compensated by increase in cost to the carrier.

• Appropriate valuation of emissions for stakeholders and regulators
 • NO\textsubscript{x} emissions must be valued at $792.8/kg instead of their current value of $79.28/kg
 • Each kilogram of CO\textsubscript{2} emissions must be valued at a dollar instead of its current value of 7¢
Explicit eco-routing
System-wide impacts

- Net reduction but possibility of net increase in externalities.
 - CO_2 emissions: LEP-CO_2 vs. LCP assignment
 - CH_4 emissions: LEP-NO_x vs. FP assignment
- Does not disproportionately affect the disadvantaged communities.

Figure 5. System-wide impact of eco-routing LEP-X assignment vs. FP assignment

Figure 6. Traffic dynamics: LEP-NO_x assignment vs. FP assignment
Policy implications

• Carriers routing their fleet on SP observe a reduction in travel time and fuel-use from eco-routing.
• Carriers routing their fleet on FP can be nudged to eco-route and minimize CP emissions.
• Carriers routing their fleet on LCP can be nudged to eco-route and minimize GHG emissions.
• The benefits from eco-routing are best realized in off-peak hours when there are fewer passenger cars.
• LFP does not render a reduction in emissions as is widely thought.
Implicit eco-routing

Private impacts

• Nearly half of all freight trips from POLA route through SELA (44% of shortest paths, 53% of fastest paths, and 39% of least cost paths)

• An individual in SELA would observe a reduction in exposure by 0.02g of NO\textsubscript{x} emissions, 0.0004g of PM emissions, and 0.006g of CO emissions, resulting in 0.2¢ fewer emissions cost.

• For the carrier having to re-route, geofence renders 10.9% longer, 14.3% slower, and 15.6% more expensive shortest, fastest, and least cost paths, respectively.
Implicit eco-routing
System-wide impacts

- Criteria pollutant emissions drop by 40% - 75%, saving $5 per person in SELA.
- SCAG observes increase in externalities
- The disadvantaged communities observe $3 reduction in emission costs per person.

Figure 7. System-wide impact of eco-routing GRP assignment vs. FP assignment
Policy implications

• The monetary benefits of reductions in emissions inside the geofence could far outweigh the cost of increased emissions elsewhere.

• Important to consider costs and benefits heterogeneously across the population.

• Appropriate valuation of emissions for stakeholders and regulators to take appropriate measures to cope with freight-related externalities.
References

Questions?

Anmol Pahwa anmpahwa@ucdavis.edu
Miguel Jaller mjaller@ucdavis.edu
Appendix A

multi-class traffic assignment by paired alternative segments (mTAPAS)

Input: ϵ – minimal flow level, θ – minimal cost level, tol – tolerance level, n, m – algorithm parameters

Output: x_{ij}^{kr} – origin-based arc flows

Step 1. Initialize origin-based arc flows - x_{ij}^{kr}, origin-based reduced arc cost - π_{ij}^{kr}, least cost path predecessor labels for every origin, every vehicle class - L^k_r, and an empty set for paired alternative segments - ρ.

Step 2. Perform All-or-Nothing (AON) assignment: For each origin - r, find the least cost path to every destination - s, for every vehicle class - k. Assign demand q^{kr}_{rs} for this path. Update x_{ij}^{kr} and π_{ij}^{kr} for arcs on this path.

Step 3. Iterate to adjust flows on arcs until the algorithm converges.

 Step 3.1. Identify potential arcs with substantial origin-based flow and reduced cost ($x_{ij}^{kr} > \epsilon; \pi_{ij}^{kr} > \theta$).

 Step 3.2. Develop and store PAS for this potential arc using the Maximum Cost Search procedure.

 Step 3.3. Perform an initial flow shift on this PAS using the Newton Method.

 Step 3.4. Perform flow shifts on n randomly selected PAS to fasten the algorithm convergence.

Step 4. Remove PAS which no longer results in significant improvement in the solution.

Step 5. If relative gap - rg, is smaller than the tolerance level - tol, then go to Step 6, else repeat Step 3.

Step 6. Return set of origin-based arc flows.
Appendix B
Maximum Cost Search (MCS) procedure

Input: a – arc, k – vehicle class, r – origin node
Output: (e_1, e_2) – PAS

Step 1. Initialize status label l_n for each node $n \in N$ and maximum cost predecessor label set L.
Step 2. Set the tail and head node on arc a and iterate.

 Step 2.1. Maximum Cost Search

 Step 2.1.1. Set the head node to the tail node.
 Step 2.1.2. Fetch the maximum cost arc towards this head node and set the tail node on the tail of this maximum cost arc
 Step 2.1.3. Set the predecessor label of the head node to this tail node.

 Step 2.2. If this predecessor is on the least cost path from origin to node j, then establish the first segment of the PAS using maximum cost labels and the second segment using least cost labels.
 Step 2.3. If this predecessor is previously identified, then a loop is established, but a PAS cannot be established.
 Step 2.4. Else update the status of this predecessor and continue to step 2.1

Step 3. Return PAS segments.