Equity Impacts of Fee Systems to Support Zero-Emission Vehicle Sales in California

Equity Impacts of Fee Systems to Support Zero-Emission Vehicle Sales in California

Speakers

Lew Fulton – STEPS Program Co-director, Institute of Transportation Studies, University of California, Davis
Gil Tal – Researcher, Plug-In Hybrid & Electric Vehicle Research Center, Institute of Transportation Studies, University of California, Davis
Julie Schiffman – Graduate Student, Institute of Transportation Studies, University of California, Davis

Event Overview

California has set ambitious goals for increasing the number of zero-emission vehicles (ZEVs) on its roadways. Currently, California requires 3% of all vehicles sold in the state to be ZEVs and transitional ZEVs; and has set aside $75 million to provide rebates to consumers, which range from $900 to $5,000 per vehicle. Subsidies and incentives may be needed for zero-emission vehicles for a decade or more. What are options for a revenue neutral, self-sustaining vehicle tax incentives system? How would a system be structured so that it is acceptable to key stakeholders, fair across demographic/income groups and economically efficient? This webinar will highlight new analysis from the Institute of Transportation Studies, UC Davis, that examines six hypothetical fee structure scenarios that could provide a sustainable source of funding for California’s Clean Vehicle Rebate Program. The scenarios explore different options for setting vehicle fees based on CO2 emissions of individual non-ZEV vehicle models, adjustments to the amount paid by lower income groups, and adjustment of fees by Manufacturer’s Suggested Retail Price.

Recording

STEPS Spring 2016 Symposium

The STEPS team gathered 150 expert stakeholders and presented 2015 research results and progress on 2016 projects.  We also hosted sessions on peak oil and global EV demand, sustainable trucking, shared mobility and connected and autonomous vehicles, ZEVs in China vs. California, and transition cost scenarios for the U.S. and California.

Agenda-STEPS Spring Symposium June 1-2 2016

Presentations

Day One

Day Two

Breakout Group Discussions on STEPS 2016 research areas

Posters

Session 3 Panel Discussion on Major User Impacts - Shared Mobility and Connected and Automated Vehicles

Session 3 Panel Discussion on Major User Impacts – Shared Mobility and Connected and Automated Vehicles

Contact Beth Bourne, bybourne@ucdavis.edu, with any questions.

UC Davis Transportation Researchers Collaborate with State Policymakers on CA Sustainable Freight Plan

By: Miguel Jaller and Lew Fulton

When the state earlier this month released for public comment its draft California Sustainable Freight Action Plan (CSFAP), we were excited to see the fruits of our labors here at ITS-Davis contributing to this comprehensive and forward-thinking draft plan.

CSFAP is an ambitious document that lays a foundation for modernizing California’s multi-billion dollar freight transportation system. Seven state agencies worked together to develop the draft in response to Governor Brown´s Executive Order B-32-15 last July, which directed the state agencies to pursue a shared vision to “improve freight efficiency, transition to zero-emission technologies and increase the competitiveness of California’s freight system.” The public comment period on the draft CSFAP is open until July 6.

Our role in the development of this plan has been to advise and convene, and to provide technical analysis and input. Just after the release of the governor’s executive order, ITS-Davis and the National Center for Sustainable Transportation convened stakeholders from academia, industry and government to discuss and identify strategies to inform the CSFAP. This working group of experts, the Freight Efficiency Strategies Development Group, met over the last eight months and produced a set of six white papers that are included in the CSFAP materials. Rather than make specific recommendations, the white papers discuss a range of strategies that could be used, granted further analyses, to accomplish some of the state’s goals for efficiency, safety, economic competitiveness, environmental and social justice, and introduction of new technologies.

Our UC Davis team led the development of two of the white papers, “Strategies to Maximize Asset Utilization in the California Freight System Part 1 and Part 2.” We highlight the importance of looking at the freight system as a whole and complex system of systems, where strategies aimed at specific stakeholders could have cascading, positive or negative, effects over others. Therefore, designing policies or strategies that consider behavioral shifts and efficiency improvements requires identifying the appropriate decision makers, which could range from large private organizations, planning agencies, or even industry sectors to households and individuals requesting residential deliveries. More importantly, the papers recognize that continuous improvements and investments are being made in the system, though in a silo manner, which do not guarantee reaching system-level efficiency improvements. That is, some efficiency gains by specific stakeholders could be done at the expense of the inefficiency of others.

To reinforce the state’s efforts, last October we launched our own Sustainable Freight Initiative here at ITS-Davis. It has two main interdependent thrusts: sustainable freight systems, and technology and fuel analysis. Our critical research dovetails nicely with the findings of CSFAP. For example, we are studying:

  • The relationship between freight activity and economic and social indicators;
  • The impacts of the on-demand economy and associated “last mile” distribution on urban traffic and environmental conditions;
  • Freight demand management strategies to improve urban goods movement;
  • The development of equity-based frameworks to assess the benefits of transportation infrastructure projects;
  • Pathways to very low carbon trucking, considering logistics and new technologies and fuels, such as biogas and other biofuels, electricity and hydrogen, and their potential for application to various truck applications and market segments
  • Strategic, tactical, and operational problems for urban goods distribution, with an emphasis on commercial and residential deliveries;
  • Opportunities and options for reducing CO2 emissions from the California rail freight sector.

Moreover, for the first time, we’ve offered an academic course on sustainable freight transportation; we hope it’s the first of many on this important topic.

In the coming years, we expect to contribute more research and knowledge, and support workforce development and stakeholder engagement to achieve the state’s targets of system efficiency, a transition to zero emission technology, and economic growth. Since we are a key contributor to the Freight Efficiency Strategies Development Working Group and are already part of the draft plan, we will continue working with the agencies to identify and refine the scope of additional strategies, and help with deployment activities.

The CSFAP has been called “innovative” and potentially “transformative.” But it’s clear that a combination of strong improvements in freight systems as well as technology and fuel solutions will be required to meet the state’s emissions and sustainable freight goals. ITS-Davis looks forward to being part of the effort to identify and develop the most promising solutions.

Paris Climate Accord: A Strong Call to Action, Including Transportation

By: Lew Fulton

The Paris Climate Accord reached on Saturday, December 12, feels like a home run. Nearly 200 countries fully agreed on text in which they pledge to make large reductions in greenhouse gas emissions over the next 15 years, with mechanisms to help ensure that this goal is achieved. It includes quantified CO2 mitigation commitments from all major economies around the world; mechanisms for reporting and verifying progress; commitments for $100 billion in financing of actions; and many other key elements.

Paris 2015 COP21 logoHowever, as President Obama said in his speech that day, this agreement does not “solve” the global climate change problem.

“Even if all the initial targets set in Paris are met, we’ll only be part of the way there when it comes to reducing carbon from the atmosphere, so we cannot be complacent.”

The president is correct: This is only a partial solution that does not (yet) limit temperature change to 2 degrees Celsius, and it needs to be fully implemented over the coming years, with all the uncertainties around that. But it does contain many promising elements. For example, it includes specific pledges from most of the signatories to cut CO2 emissions by 2030. These commitments vary widely, as do each country’s circumstances.

What’s the outlook for transportation? Last week I noted some of the measures that feature in the Intended Nationally Determined Contributions (INDCs) of a range of countries. Today I’ll show a comparison of actual targets under the accord, with one possible scenario for transport. This is highly speculative since few countries have indicated the sectoral breakdowns of their targets; for example, even countries shooting for 40% reductions in CO2 emissions have not indicated if that means 40% in each sector (transport, buildings, industry, electricity generation, etc.) or 40% on average with individual sectors varying. But if you take for a moment the possibility that transportation delivers reductions at an average intensity, you can gain a sense of the challenge ahead.

The first figure below shows the 2014 estimated energy-related CO2 emissions for six major economies, and the 2030 target (taken as the midpoint in cases where a range of targets is possible, based on analysis presented here). The second figure shows hypothetical targets if transportation CO2 were reduced in the same proportion as the overall targets for each country, starting from 2014 transportation CO2 emissions as estimated by the International Energy Agency.

As you can see in the first figure, the U.S. commitment is ambitious – a major reduction from nearly 20 tons per capita to less than 13 by 2030. As shown in the second figure, if the U.S. reduced transportation-related CO2 emissions in proportion to this total, it would be a cut from about 6.5 tons per capita to about 4.5 by 2030.

This would still leave the U.S. at a higher per-capita emissions level than any of the other countries or regions shown. But it certainly would put the U.S. on a strong downward trajectory. China and India would actually increase their per-capita transportation emissions, but not by as much as would have occurred without their commitments – and both would remain at a very low CO2 level in 2030. Russia would retain a more average position; though Russia is noticeable in its overall target (Figure 1) in that it starts with fairly high emissions and these increase significantly – it would become the highest per capita of the six countries by 2030.

figure2

Figure 1. All energy-related CO2 emissions per capita for selected countries, for 2014 and explicit or implied targets for 2030 (based on analysis conducted by climateactiontracker.org, using national INDC reports; for 2030 approximate midpoints are used where a range of targets or uncertainty in targets may exist; these are meant to be indicative and are not official numbers).

Figure 2. Transportation-related CO2 emissions per capita for selected countries, for 2014 and hypothetical targets for 2030 (based on the analysis conducted by climateactiontracker.org, and adjusting the national commitments in Figure 1 for transportation, assuming transportation reductions are taken in the same proportion. Transportation CO2 estimates for 2014 are taken from the IEA Mobility Model).

Figure 2. Transportation-related CO2 emissions per capita for selected countries, for 2014 and hypothetical targets for 2030 (based on the analysis conducted by climateactiontracker.org, and adjusting the national commitments in Figure 1 for transportation, assuming transportation reductions are taken in the same proportion. Transportation CO2 estimates for 2014 are taken from the IEA Mobility Model).

Whether or not countries decide to tackle transportation at the same level of intensity as other sectors, they will need to include ambitious goals for transportation to succeed. How will they achieve targets like these and move from planning to doing?

“You have to do many different things and each place it’s different,” noted California Governor Jerry Brown in Paris.

Among the combinations of measures that make sense for most countries to include: promote much better fuel economy of new cars and trucks (and also of second-hand imports, for those countries that import many such vehicles); shifts of travel from high CO2 modes (like cars and trucks) to lower CO2 modes (mass transit, cycling and walking, along with more rail freight). Alternative fuels will also need to play an expanding role. The only three potentially very low-emission fuels are electricity, hydrogen and biofuels, and these will need to lead the way to very low CO2 emissions. International aviation and shipping are particular challenges, since they are not covered under individual country commitments. The international bodies International Civil Aviation Organization (ICAO) and International Maritime Organization (IMO) have been asked to redouble their efforts to work with industry on commitments and strategies for these sectors, and they too will need to put a large emphasis on efficiency and alternative fuels.

The best combination of measures will vary by country, as will the role of transportation in achieving overall CO2 targets. During 2016, the STEPS program at UC Davis will be looking more closely at the plans of different countries and assessing combinations of transportation measures that can help get the job done.

All told, the U.N. Framework Convention on Climate Change Conference of the Parties (COP21) in Paris was the subject of exhaustive negotiations (and a 31-page agreement); extensive coverage in traditional media; and enormous attention on social media.

What’s yet to be written is whether the conference ultimately achieves its lofty goal: ensuring a “shared future and shared environment” for our planet.

STEPS Fall 2015 Symposium (Dec. 2015)

December 10, 2015

Packet: Agenda, Poster List, 2015 Projects, Attendees

Presentations

Posters

Alumna Julia Sohnen’s Career Charges Forward with BMW

As an advanced technology engineer for the BMW Group Technology Office, Julia Sohnen, M.S., Transportation Technology and Policy (TTP), works to improve sustainable mobility and innovation with one of the largest automobile manufacturers in the world — all within the heart of California’s Silicon Valley.

Sohnen conducts customer research for the BMW i ChargeForward program. This program partners with California’s Pacific Gas and Electric Company (PG&E) to study how electric vehicles can operate as a flexible load on the electricity grid through the forward-looking concept known as smart charging. The idea is to manage at-home electric vehicle charging to help the utility manage peak load, stabilize the grid, and provide cleaner source energy.

When PG&E is experiencing peak load conditions, participating BMW i3 electric vehicle owners who volunteered for the ChargeForward program may be asked to delay charging for up to an hour. Owners can choose to opt out of any single delayed charging request. All of this research is being conducted locally in the San Francisco Bay area.

“Now that the program has started, my responsibility is managing all the customer research and establishing research goals,” Sohnen said. “We want to explore how to better match charging of the electric vehicles to dynamic energy supply sources.” While Sohnen conducts fresh research in automotive innovation, she likes to stay connected to her Aggie network, tracing her beginnings with BMW back to ITS-Davis and its multidisciplinary TTP program.

IMG_1252_crop

Sohnen, like many recent graduates, did some soul-searching before arriving at her position with BMW. With a background in mechanical and aerospace engineering, she started her career working for Boeing Satellite Systems in Los Angeles. Realizing that she wanted to shift her focus to sustainability, Sohnen left Boeing to return to school.

“I wanted to apply my control systems background to energy systems. A former professor at Cornell suggested ITS-Davis, specifically for the STEPS (Sustainable Transportation Energy Pathways) program. The transportation-energy pathways and the infrastructure component really aligned well with where I wanted to go next. It was a perfect fit.”

At ITS-Davis, there is no average student, typical path, or standard curriculum. Students develop their own multidisciplinary program. The flexibility of the TTP program combined with Sohnen’s clear goals and aspirations led her to her current profession. It turns out Sohnen’s thesis on carbon emissions associated with charging electric vehicles is a timely topic related to her current work.

“Through that thesis and the connections I made in the STEPS program, I was able find this position,” Sohnen explained.

Sohnen took advantage of networking opportunities with BMW and other automobile companies, made available to her through the ITS-Davis STEPS program. She networked with several BMW engineers at the STEPS symposia and reached out to her connections when beginning her job hunt. She is now approaching her third year with BMW, working on second-life battery research and technology scouting, in addition to the BMW i ChargeForward program.

“Students should realize the advantage of the program and how Davis is a strong network for state agencies, other universities, and industries,” Sohnen reflected. “There are a lot of talented people that come out of ITS-Davis and stay in this electric vehicle space. These are the people you will be constantly running into for the rest of your career.”

Why the World’s Appetite for Oil Will Peak Soon

By Amy Myers Jaffe

When it comes to oil demand, the conventional wisdom is clear: Population growth and a rising global middle class guarantee that demand—and prices—will rise over the coming decades. It is a story line that is almost universally accepted by investors, governments and industry alike.

But like many such consensus views, it is one that should be treated with caution.

The world’s economy is experiencing transformational changes that, I believe, will dramatically alter patterns of energy use over the next 20 years. Exponential gains in industrial productivity, software-assisted logistics, rapid urbanization, increased political turmoil in key regions of the developing world, and large bets on renewable energy are among the many factors that will combine to slow the previous breakneck growth for oil.

The result, in my opinion, is as startling as it is world-changing: Global oil demand will peak within the next two decades.

The geopolitical and economic implications of peaking demand will be huge. The fall in the importance of Saudi Arabia is already palpable, with all the major powers from the U.S. to China more willing to accommodate Saudi archrival Iran. In addition, Russia’s ability to use oil as a weapon will wane, as will the economic leverage of the Organization of the Petroleum Exporting Countries. As economic growth becomes increasingly disconnected from oil, world powers will likely shift their attention to other increasingly scarce resources that will be equally critical to economic well-being, such as food, water and minerals. A greater interest in Africa, for example, is already starting to emerge.

For sure, peak demand is far from how the oil patch sees things. The oil industry’s operating premise is that a rising global middle class from China, India, Indonesia, Malaysia, Thailand and parts of Africa and the Middle East will translate into soaring car ownership and fuel consumption. Officially, the International Energy Agency forecasts oil demand rising to 104 million barrels a day by 2040 from 90 million barrels a day in 2013, as surging demand in the developing world dwarfs the demand declines expected in the industrialized countries.

But I believe this forecast misses on both fronts—underestimating the extent of the decline in demand for oil in the developed world and overestimating the extent of the rise in the developing countries.

Signs of change are already apparent. Most everyone agrees, for instance, that a combination of policy inducements, energy taxes and technological breakthroughs has resulted in a peak in oil demand in the largest industrialized economies. Europe’s oil use last year hit its lowest level since the mid-1990s. The U.S. Energy Information Administration declared 2007 as the peak year for oil use in the U.S., with demand expected to fall by between 1.8 million and 2.7 million barrels a day by 2035 based on improvements in automotive efficiency and demographic trends.

Moreover, signs are emerging of slowing oil demand even in China, which has been the biggest source of growth in consumption over the past decade. Diesel demand in China fell in each of the past two years, raising doubts about how much longer China’s economy will require a growing supply of oil. China Petroleum & Chemical Corp., one of China’s largest fuel marketers, recently said on a call with analysts that China’s diesel demand could peak by 2017 and gasoline by 2025 as the country transitions to less-energy-intensive activities and sees through an aggressive national energy policy that promotes renewable energy and advanced automotive technology at home and for export.

IT efficiencies

But these trends are just the beginning of what will be a gradual shift that will eventually get the whole world to a peaking of oil demand.

Let’s start with the most important: the advent of information technology and big data, which are bringing revolutionary changes to daily life, especially for millennials. Exponential gains in productivity are expected for everything from transportation logistics to industrial equipment, which together with the growth of the sharing economy offer potentially dramatic savings on energy use.

We all know how much we optimize routing, timing, loading and sharing through the use of our own mobile devices. Mobile apps that help drivers avoid traffic congestion save fuel, for example, since idling in traffic wastes about 2.9 billion gallons of fuel a year in the U.S.

What might be less obvious is how this combination of satellite imagery, remote sensors, communications technology, cloud-based computing, robotics and “smart” industrial machinery is reducing the amount of fuel needed in other kinds of economic activity. Big-data analytics applied to aviation navigation is already shaving 10% to 20% off fuel demand, and similar advances are expected in the rail industry. Manufacturing via automation and 3-D printing are also expected to reduce fuel requirements.

Business-as-usual oil forecasts are also predicated on a rising need for consumer plastics, but this, too, may prove wildly overstated. Roughly 5% of global oil consumption goes to plastics production.

While it is hard to eliminate plastics from daily life, consumer companies have been trying to reduce their plastics footprint, in part in response to millennial consumers who are pushing companies to reduce waste, lower carbon emissions and eliminate landfills through intelligent design, smarter materials and recycling. Global retailers, such as apparel companies, are moving away from plastic packaging, and car companies are considering similar strategies that would curb demand for plastics substantially.

Fewer car commuters

Rapid urbanization may also point to a future drop in oil demand. Cities currently account for about 66% of global energy use, with forecasters projecting that figure to rise to 80% as the population shifts to urban centers.

But this trend of massive urbanization will more likely reduce the viability of private car ownership in the very places that are supposed to serve as the new centers of oil use, such as India, Indonesia and the Arab Gulf. Chances are, air-pollution concerns and congestion in mega-cities will prevent giant increases in the number of cars, and therefore hinder the substantial rise in oil demand that forecasters are expecting.

Increasingly, cities around the world are seeking smarter designs for transport systems as well as penalties and restrictions on car ownership. Already in the West, trendsetting millennials are urbanizing, eliminating the need for commuting and interest in individual car ownership, just as their baby-boomer parents are retiring and driving less.

At the same time, increased turmoil and low oil prices are crippling economic activity in parts of the Middle East and Africa, the two regions that are supposed to be the big drivers of continued growth in oil use. The wealth-accumulation prospects for the middle classes in these societies are uncertain—and so, therefore, is their demand for oil. What’s more, many state-sponsored fuel-price subsidies, which have been a key driver of oil demand in the developing world, are rapidly disappearing.

Finally, renewable energy is turning out to be more promising than expected, eating away at oil’s share of electricity production—and, eventually, automotive energy. China’s commitment to an industrialization program pushing itself to be the world’s major exporter of solar panels and advanced vehicles, including the production of five million electric vehicles a year, is another source of caution to those who forecast oil demand will rise exponentially forever.

None of this is set in stone, of course. A lot could change in the coming years—economically, politically, technologically—that could alter the oil-demand equation. But as Paris climate talks approach, governments around the world will be working to highlight their energy-efficiency policies and sharing information on how to lower oil intensity for the global economy. Whatever collective gains they make could seal the deal for peak demand.

Environmental Assessment of Natural Gas in Transportation

Environmental Assessment of Natural Gas in Transportation

Title: Environmental Assessment of Natural Gas in Transportation

Date: April 3, 2015, 9:30 a.m. (PST)

Presenter: Rosa Dominguez-Faus

This webinar focused on research discussed in a new white paper, “The Carbon Intensity of NGV Long-Haul Trucks.” Discussion compared the carbon intensity of natural gas and diesel long haul trucks as calculated with the latest version of GREET1. It also explored the contribution of different assumptions-  such as methane leakage, engine efficiency and natural gas storage-  to the well-to-wheels carbon intensity of natural gas trucks. Additionally, the webinar examined how to calculate the break-even methane leakage for natural gas trucks and the extent to which renewable natural gas can improve the climate performance of NGV trucks.

To view the slides for this webinar, click here.